Do you want to publish a course? Click here

Improving Approximate Optimal Transport Distances using Quantization

108   0   0.0 ( 0 )
 Added by Gaspard Beugnot
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Optimal transport (OT) is a popular tool in machine learning to compare probability measures geometrically, but it comes with substantial computational burden. Linear programming algorithms for computing OT distances scale cubically in the size of the input, making OT impractical in the large-sample regime. We introduce a practical algorithm, which relies on a quantization step, to estimate OT distances between measures given cheap sample access. We also provide a variant of our algorithm to improve the performance of approximate solvers, focusing on those for entropy-regularized transport. We give theoretical guarantees on the benefits of this quantization step and display experiments showing that it behaves well in practice, providing a practical approximation algorithm that can be used as a drop-in replacement for existing OT estimators.



rate research

Read More

We propose a new algorithm that uses an auxiliary neural network to express the potential of the optimal transport map between two data distributions. In the sequel, we use the aforementioned map to train generative networks. Unlike WGANs, where the Euclidean distance is ${it implicitly}$ used, this new method allows to ${it explicitly}$ use ${it any}$ transportation cost function that can be chosen to match the problem at hand. For example, it allows to use the squared distance as a transportation cost function, giving rise to the Wasserstein-2 metric for probability distributions, which results in fast and stable gradient descends. It also allows to use image centered distances, like the structure similarity index, with notable differences in the results.
Lately, post-training quantization methods have gained considerable attention, as they are simple to use, and require only a small unlabeled calibration set. This small dataset cannot be used to fine-tune the model without significant over-fitting. Instead, these methods only use the calibration set to set the activations dynamic ranges. However, such methods always resulted in significant accuracy degradation, when used below 8-bits (except on small datasets). Here we aim to break the 8-bit barrier. To this end, we minimize the quantization errors of each layer separately by optimizing its parameters over the calibration set. We empirically demonstrate that this approach is: (1) much less susceptible to over-fitting than the standard fine-tuning approaches, and can be used even on a very small calibration set; and (2) more powerful than previous methods, which only set the activations dynamic ranges. Furthermore, we demonstrate how to optimally allocate the bit-widths for each layer, while constraining accuracy degradation or model compression by proposing a novel integer programming formulation. Finally, we suggest model global statistics tuning, to correct biases introduced during quantization. Together, these methods yield state-of-the-art results for both vision and text models. For instance, on ResNet50, we obtain less than 1% accuracy degradation --- with 4-bit weights and activations in all layers, but the smallest two. We open-sourced our code.
Learning generic representations with deep networks requires massive training samples and significant computer resources. To learn a new specific task, an important issue is to transfer the generic teachers representation to a student network. In this paper, we propose to use a metric between representations that is based on a functional view of neurons. We use optimal transport to quantify the match between two representations, yielding a distance that embeds some invariances inherent to the representation of deep networks. This distance defines a regularizer promoting the similarity of the students representation with that of the teacher. Our approach can be used in any learning context where representation transfer is applicable. We experiment here on two standard settings: inductive transfer learning, where the teachers representation is transferred to a student network of same architecture for a new related task, and knowledge distillation, where the teachers representation is transferred to a student of simpler architecture for the same task (model compression). Our approach also lends itself to solving new learning problems; we demonstrate this by showing how to directly transfer the teachers representation to a simpler architecture student for a new related task.
Computing optimal transport maps between high-dimensional and continuous distributions is a challenging problem in optimal transport (OT). Generative adversarial networks (GANs) are powerful generative models which have been successfully applied to learn maps across high-dimensional domains. However, little is known about the nature of the map learned with a GAN objective. To address this problem, we propose a generative adversarial model in which the discriminators objective is the $2$-Wasserstein metric. We show that during training, our generator follows the $W_2$-geodesic between the initial and the target distributions. As a consequence, it reproduces an optimal map at the end of training. We validate our approach empirically in both low-dimensional and high-dimensional continuous settings, and show that it outperforms prior methods on image data.
Inverse optimal transport (OT) refers to the problem of learning the cost function for OT from observed transport plan or its samples. In this paper, we derive an unconstrained convex optimization formulation of the inverse OT problem, which can be further augmented by any customizable regularization. We provide a comprehensive characterization of the properties of inverse OT, including uniqueness of solutions. We also develop two numerical algorithms, one is a fast matrix scaling method based on the Sinkhorn-Knopp algorithm for discrete OT, and the other one is a learning based algorithm that parameterizes the cost function as a deep neural network for continuous OT. The novel framework proposed in the work avoids repeatedly solving a forward OT in each iteration which has been a thorny computational bottleneck for the bi-level optimization in existing inverse OT approaches. Numerical results demonstrate promising efficiency and accuracy advantages of the proposed algorithms over existing state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا