Do you want to publish a course? Click here

Topological classification and diagnosis in magnetically ordered electronic materials

65   0   0.0 ( 0 )
 Added by Yi Jiang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that compositions of time-reversal and spatial symmetries, also known as the magnetic-space-group symmetries, protect topological invariants as well as surface states that are distinct from those of all preceding topological states. We obtain, by explicit and exhaustive construction, the topological classification of electronic band insulators that are magnetically ordered for each one of the 1421 magnetic space groups in three dimensions. We have also computed the symmetry-based indicators for each nontrivial class, and, by doing so, establish the complete mapping from symmetry representations to topological invariants.



rate research

Read More

Topological aspects of the geometry of DNA and similar chiral molecules have received a lot of attention, while the topology of their electronic structure is less explored. Previous experiments have revealed that DNA can efficiently filter spin-polarized electrons between metal contacts, a process called chiral-induced spin-selectivity (CISS). However, the underlying correlation between chiral structure and electronic spin remains elusive. In this work, we reveal an orbital texture in the band structure, a topological characteristic induced by the chirality. We find that this orbital texture enables the chiral molecule to polarize the quantum orbital. This orbital polarization effect (OPE) induces spin polarization assisted by the spin-orbit interaction from a metal contact and leads to magnetorestistance and chiral separation. The orbital angular momentum of photoelectrons also plays an essential role in related photoemission experiments. Beyond CISS, we predict that OPE can induce spin-selective phenomena even in achiral but inversion-breaking materials.
Topological semimetals exhibit band crossings near the Fermi energy, which are protected by the nontrivial topological character of the wave functions. In many cases, these topological band degeneracies give rise to exotic surface states and unusual magneto-transport properties. In this paper, we present a complete classification of all possible nonsymmorphic band degeneracies in hexagonal materials with strong spin-orbit coupling. This includes (i) band crossings protected by conventional nonsymmorphic symmetries, whose partial translation is within the invariant space of the mirror/rotation symmetry; and (ii) band crossings protected by off-centered mirror/rotation symmetries, whose partial translation is orthogonal to the invariant space. Our analysis is based on (i) the algebraic relations obeyed by the symmetry operators and (ii) the compatibility relations between irreducible representations at different high-symmetry points of the Brillouin zone. We identify a number of existing materials where these nonsymmorphic nodal lines are realized. Based on these example materials, we examine the surface states that are associated with the topological band crossings. Implications for experiments and device applications are briefly discussed.
The recent discovery of antiferromagnetic (AFM) topological insulator (TI) MnBi$_2$Te$_4$ has triggered great research efforts on exploring novel magnetic topological physics. Based on first-principles calculations, we find that the manipulation of magnetic orientation and order not only significantly affects material symmetries and orbital hybridizations, but also results in variant new magnetic topological phases in MnBi$_2$Te$_4$. We thus predict a series of unusual topological quantum phase transitions that are magnetically controllable in the material, including phase transitions from AFM TI to AFM mirror topological crystalline insulator, from type-II to type-I topological Weyl semimetal, and from axion insulator to Chern insulator. The findings open new opportunities for future research and applications of magnetic topological materials.
SmS, a prototypical intermediate valence compound as well as a candidate material for correlated topological insulator, has been studied by performing high-pressure nuclear magnetic resonance measurements on a $^{33}$S-enriched sample. The observation of an additional signal below 15-20~K above a nonmagnetic-magnetic transition pressure $P_{rm c2} = 2.0$~GPa gives evidence for the magnetic transition. The absence of a Curie-term in the Knight shift near $P_{rm c2}$ indicates that the transition occurs in electronic states where the localized character of $4f$ electrons is screened through a substantial hybridization. Two distinguishable signals coexist during the stepwise evolution of magnetic volume fraction with lowering temperature near $P_{rm c2}$, which is well described in the regime of first-order transition. The fact that hyperfine fields from the ordered moments cancel out at the S site leads us to a conclusion that the ordered phase has the type II antiferromagnetic structure.
We review theoretical and experimental highlights in transport in two-dimensional materials focussing on key developments over the last five years. Topological insulators are finding applications in magnetic devices, while Hall transport in doped samples and the general issue of topological protection remain controversial. In transition metal dichalcogenides valley-dependent electrical and optical phenomena continue to stimulate state-of-the-art experiments. In Weyl semimetals the properties of Fermi arcs are being actively investigated. A new field, expected to grow in the near future, focuses on the non-linear electrical and optical responses of topological materials, where fundamental questions are once more being asked about the intertwining roles of the Berry curvature and disorder scattering. In topological superconductors the quest for chiral superconductivity, Majorana fermions and topological quantum computing is continuing apace.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا