No Arabic abstract
We have studied the three-body recombination rates on both sides of the interspecies d-wave Feshbach resonance in the $^{85}$Rb,-$^{87}$Rb-$^{87}$Rb system using the $R$-matrix propagation method in the hyperspherical coordinate frame. Two different mechanisms of recombination rate enhancement for positive and negative $^{85}$Rb,-$^{87}$Rb d-wave scattering lengths are analyzed. On the positive scattering length side, the recombination rate enhancement occurs due to the existence of three-body shape resonance, while on the negative scattering length side, the coupling between the lowest entrance channel and the highest recombination channel is crucial to the appearance of the enhancement. In addition, our study shows that the intraspecies interaction plays a significant role in determining the emergence of recombination rate enhancements. Compared to the case in which the three pairwise interactions are all in d-wave resonance, when the $^{87}$Rb-$^{87}$Rb interaction is near the d-wave resonance, the values of the interspecies scattering length that produce the recombination enhancement shift. In particular, when the $^{87}$Rb-$^{87}$Rb interaction is away from the d-wave resonance, the enhancement disappears on the negative interspecies scattering length side.
We demonstrate coherent control of both the rotational and hyperfine state of ultracold, chemically stable $^{87}$Rb$^{133}$Cs molecules with external microwave fields. We create a sample of ~2000 molecules in the lowest hyperfine level of the rovibronic ground state N = 0. We measure the transition frequencies to 8 different hyperfine levels of the N = 1 state at two magnetic fields ~23 G apart. We determine accurate values of rotational and hyperfine coupling constants that agree well with previous calculations. We observe Rabi oscillations on each transition, allowing complete population transfer to a selected hyperfine level of N = 1. Subsequent application of a second microwave pulse allows transfer of molecules back to a different hyperfine level of N = 0.
We report on the observation of ultracold heteronuclear Feshbach molecules. Starting with a $^{87}$Rb BEC and a cold atomic gas of $^{85}$Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. Even though the $^{85}$Rb gas is non-degenerate we observe a large molecular conversion efficiency due to the presence of a quantum degenerate $^{87}$Rb gas; this represents a key feature of our system. We compare the molecule creation at two different Feshbach resonances with different magnetic-field widths. The two Feshbach resonances are located at $265.44pm0.15$ G and $372.4pm1.3$ G. We also directly measure the small binding energy of the molecules through resonant magnetic-field association.
We have studied hetero- and homonuclear excited state/ground state collisions by loading both $^{85}$Rb and $^{87}$Rb into a far off resonant trap (FORT). Because of the relatively weak confinement of the FORT, we expect the hyperfine structure of the different isotopes to play a crucial role in the collision rates. This dependence on hyperfine structure allows us to measure collisions associated with long range interatomic potentials of different structure: such as long and short ranged; or such as purely attractive, purely repulsive, or mixed attractive and repulsive. We observe significantly different loss rates for different excited state potentials. Additionally, we observe that some collisional channels loss rates are saturated at our operating intensities (~15 mW/cm$^{2}$). These losses are important limitations in loading dual isotope optical traps.
We report on the observation of two Feshbach resonances in collisions between ultracold $^6$Li and $^{87}$Rb atoms in their respective hyperfine ground states $|F,m_F>=|1/2,1/2>$ and $|1,1>$. The resonances show up as trap losses for the $^6$Li cloud induced by inelastic Li-Rb-Rb three-body collisions. The magnetic field values where they occur represent important benchmarks for an accurate determination of the interspecies interaction potentials. A broad Feshbach resonance located at 1066.92 G opens interesting prospects for the creation of ultracold heteronuclear molecules. We furthermore observe a strong enhancement of the narrow p-wave Feshbach resonance in collisions of $^6$Li atoms at 158.55 G in the presence of a dense $^{87}$Rb cloud. The effect of the $^{87}$Rb cloud is to introduce Li-Li-Rb three-body collisions occurring at a higher rate than Li-Li-Li collisions.
Self-bound quantum droplets are a newly discovered phase in the context of ultracold atoms. In this work we report their experimental realization following the original proposal by Petrov [Phys. Rev. Lett. 115, 155302 (2015)], using an attractive bosonic mixture. In this system spherical droplets form due to the balance of competing attractive and repulsive forces, provided by the mean-field energy close to the collapse threshold and the first-order correction due to quantum fluctuations. Thanks to an optical levitating potential with negligible residual confinement we observe self-bound droplets in free space and we characterize the conditions for their formation as well as their equilibrium properties. This work sets the stage for future studies on quantum droplets, from the measurement of their peculiar excitation spectrum, to the exploration of their superfluid nature.