No Arabic abstract
The $S_8$ tension is a longstanding discrepancy between the cosmological and local determination of the amplitude of matter fluctuations, parameterized as $S_8equivsigma_8(Omega_m/0.3)^{0.5}$, where $sigma_8$ is the root mean square of matter fluctuations on a 8 $h^{-1}$Mpc scale, and $Omega_m$ is the total matter abundance. It was recently shown that dark matter (DM) decaying into a massless (dark radiation) and a massive (warm DM) species, with a lifetime $Gamma^{-1} simeq 55~ (varepsilon/0.007)^{1.4}$ Gyrs -- where $varepsilon$ represent the mass-energy fraction transferred to the massless component -- can resolve the tension. Thanks to a new, fast and accurate approximation scheme for the warm species, we perform a comprehensive study of this 2-body decaying DM scenario, discussing in details its dynamics and its impact on the CMB and linear matter power spectra. We then confront the robustness of the resolution to the $S_8$ tension against a number of changes in the analysis: different $S_8$ priors, marginalization over the lensing information in Planck data, trading Planck high$-ell$ polarization data for those from the SPTpol collaboration, and the inclusion of the recent results from the Xenon1T collaboration. We conclude that the preference for decaying DM, while entirely driven by the local $S_8$ measurements, does not sensibly degrade the fit to any of the cosmological data-sets considered, and that the model could explain the anomalous electron recoil excess reported by the Xenon1T collaboration.
It has been suggested that late-universe dark matter decays can alleviate the tension between measurements of $H_0$ in the local universe and its value inferred from cosmic microwave background fluctuations. Decaying dark matter can potentially account for this discrepancy as it reshuffles the energy density between matter and radiation and as a result allows dark energy to become dominant at earlier times. We show that the low multipoles amplitude of the cosmic microwave background anisotropy power spectrum severely constrains the feasibility of late-time decays as a solution to the $H_0$ tension.
We constrain and update the bounds on the life-time of a decaying dark matter model with a warm massive daughter particle using the most recent low-redshift probes. We use Supernovae Type-Ia, Baryon Acoustic Oscillations and the time delay measurements of gravitationally lensed quasars. These data sets are complemented by the early universe priors taken from the Cosmic Microwave background. For the maximum allowed fraction of the relativistic daughter particle, the updated bounds on the life-time are found to be $tau > 9, rm{Gyr}$ and $tau >11,rm{Gyr}$ at $95%$ C.L., for the two-body and many-body decay scenarios, respectively. We also comment on the recent proposal that the current two-body decaying dark matter model can provide resolution for the $H_0$-tension, by contrasting against the standard $Lambda$CDM model. We infer that the current dark matter decaying scenario is unlikely to alleviate the $H_0$-tension. We find that the decaying dark matter is able to reduce the trend of the decreasing $H_0$ values with increasing lens redshifts observed in the strong lensing dataset.
Recent weak lensing surveys have revealed that the direct measurement of the parameter combination $S_8equivsigma_8(Omega_m/0.3)^{0.5}$ -- measuring the amplitude of matter fluctuations on 8 $h^{-1}$Mpc scales -- is $sim3sigma$ discrepant with the value reconstructed from cosmic microwave background (CMB) data assuming the $Lambda$CDM model. In this Letter, we show that it is possible to resolve the tension if dark matter (DM) decays with a lifetime of $text{log}_{10}(Gamma^{-1}/ text{Gyr})= 1.75_{-0.95}^{+1.4}$ into one massless and one massive product, and transfers a fraction $varepsilonsimeq 0.7^{+2.7}_{-0.6}%$ of its rest mass energy to the massless component. The velocity-kick received by the massive daughter leads to a suppression of gravitational clustering below its free-streaming length, thereby reducing the $sigma_8$ value as compared to that inferred from the standard $Lambda$CDM model, in a similar fashion to massive neutrino and standard warm DM. Contrarily to the latter scenarios, the time-dependence of the power suppression and the free-streaming scale allows the 2-body decaying DM scenario to accommodate CMB, baryon acoustic oscillation, growth factor and uncalibrated supernova Ia data. We briefly discuss implications for DM model building, galactic small-scale structure problems and the recent Xenon-1T excess. Future experiments measuring the growth factor to high accuracy at $0lesssim zlesssim1$ can further test this scenario.
We study the cosmological effects of two-body dark matter decays where the products of the decay include a massless and a massive particle. We show that if the massive daughter particle is slightly warm it is possible to relieve the tension between distance ladder measurements of the present day Hubble parameter with measurements from the cosmic microwave background.
The $Lambda$CDM prediction of $S_8equivsigma_8(Omega_m/0.3)^{0.5}$ -- where $sigma_8$ is the root mean square of matter fluctuations on a 8 $h^{-1}$Mpc scale -- once calibrated on Planck CMB data is $2-3sigma$ lower than its direct estimate by a number of weak lensing surveys. In this paper, we explore the possibility that the $S_8$-tension is due to a non-thermal hot dark matter (HDM) fractional contribution to the universe energy density leading to a power suppression at small-scales in the matter power spectrum. Any HDM models can be characterized by its effective mass $ m_{sp}^{rm eff}$ and its contribution to the relativistic degrees of freedom at CMB decoupling $Delta N_{rm eff}$. Taking the specific example of a sterile particle produced from the decay of the inflaton during a matter dominated era, we find that from Planck only the tension can be reduced below $2sigma$, but Planck does not favor a non-zero ${m_{sp}^{rm eff},Delta N_{rm eff}}$. In combination with a measurement of $S_8$ from KIDS1000+BOSS+2dfLenS, the $S_8$-tension would hint at the existence of a particle of mass $ m_{sp}^{rm eff} simeq 0.67_{-0.48}^{+0.26}$ ${rm eV}$ with a contribution to $Delta N_{rm eff} simeq0.06pm0.05$. However, Pantheon and BOSS BAO/$fsigma_8$ data restricts the particle mass to $m_{sp}^{rm eff} simeq 0.48_{-0.36}^{+0.17}$ and contribution to $Delta N_{rm eff} simeq 0.046_{-0.031}^{+0.004}$. We discuss implications of our results for other canonical non-thermal HDM models -- the Dodelson-Widrow model and a thermal sterile particle with a different temperature in the hidden sector. We report competitive results on such hidden sector temperature which might have interesting implications for particle physics model building, in particular connecting the $S_8$-tension to the longstanding short baseline oscillation anomaly.