Do you want to publish a course? Click here

Inspecting the Cepheid distance ladder: The Hubble Space Telescope distance to the SNIa host galaxy NGC 5584

119   0   0.0 ( 0 )
 Added by Behnam Javanmardi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The current tension between the direct and the early Universe measurements of the Hubble Constant, $H_0$, requires detailed scrutiny of all the data and methods used in the studies on both sides of the debate. The Cepheids in the type Ia supernova (SNIa) host galaxy NGC 5584 played a key role in the local measurement of $H_0$. The SH0ES project used the observations of this galaxy to derive a relation between Cepheids periods and ratios of their amplitudes in different optical bands of the Hubble Space Telescope (HST), and used these relations to analyse the light curves of the Cepheids in around half of the current sample of local SNIa host galaxies. In this work, we present an independent detailed analysis of the Cepheids in NGC 5584. We employ different tools for our photometric analysis and a completely different method for our light curve analysis, and we do not find a systematic difference between our period and mean magnitude measurements compared to those reported by SH0ES. By adopting a period-luminosity relation calibrated by the Cepheids in the Milky Way, we measure a distance modulus $mu=31.810pm0.047$ (mag) which is in agreement with $mu=31.786pm0.046$ (mag) measured by SH0ES. In addition, the relations we find between periods and amplitude ratios of the Cepheids in NGC 5584 are significantly tighter than those of SH0ES and their potential impact on the direct $H_0$ measurement will be investigated in future studies.



rate research

Read More

The distance to NGC 7331 has been derived from Cepheid variables observed with HST/WFPC2, as part of the Extragalactic Distance Scale Key Project. Multi-epoch exposures in F555W (V) and F814W (I), with photometry derived independently from DoPHOT and DAOPHOT/ALLFRAME programs, were used to detect a total of 13 reliable Cepheids, with periods between 11 and 42 days. The relative distance moduli between NGC 7331 and the LMC, imply an extinction to NGC 7331 of A_V = 0.47+-0.15 mag, and an extinction-corrected distance modulus to NGC 7331 of 30.89+-0.14(random) mag, equivalent to a distance of 15.1 Mpc. There are additional systematic uncertainties in the distance modulus of +-0.12 mag due to the calibration of the Cepheid Period-Luminosity relation, and a systematic offset of +0.05+-0.04 mag if we applied the metallicity correction inferred from the M101 results of Kennicutt et al 1998.
335 - M. M. Fausnaugh 2014
We identify and phase a sample of 81 Cepheids in the maser-host galaxy NGC 4258 using the Large Binocular Telescope (LBT), and obtain calibrated mean magnitudes in up to 4 filters for a subset of 43 Cepheids using archival HST data. We employ 3 models to study the systematic effects of extinction, the assumed extinction law, and metallicity on the Cepheid distance to NGC 4258. We find a correction to the Cepheid colors consistent with a grayer extinction law in NGC 4258 compared to the Milky Way ($R_V =4.9$), although we believe this is indicative of other systematic effects. If we combine our Cepheid sample with previously known Cepheids, we find a significant metallicity adjustment to the distance modulus of $gamma_1 = -0.61 pm 0.21$ mag/dex, for the Zaritsky et al. (1994) metallicity scale, as well as a weak trend of Cepheid colors with metallicity. Conclusions about the absolute effect of metallicity on Cepheid mean magnitudes appear to be limited by the available data on the metallicity gradient in NGC 4258, but our Cepheid data require at least some metallicity adjustment to make the Cepheid distance consistent with independent distances to the LMC and NGC 4258. From our ensemble of models and the geometric maser distance of NGC 4258 ($mu_{N4258} = 29.40 pm 0.06$ mag), we estimate $mu_{LMC} = 18.57 pm 0.14$ mag ($51.82 pm 3.23$ kpc).
Recent estimates of the Cepheid distance modulus of NGC 6822 differ by 0.18 mag. To investigate this we present new multi-epoch JHKs photometry of classical Cepheids in the central region of NGC 6822 and show that there is a zero-point difference from earlier work. These data together with optical and mid-infrared observations from the literature are used to derive estimates of the distance modulus of NGC 6822. A best value of 23.40 mag is adopted, based on an LMC distance modulus of 18.50 mag. The standard error of this quantity is ~0.05 mag. We show that to derive consistent moduli from Cepheid observations at different wavelengths, it is necessary that the fiducial LMC period-luminosity relations at these wavelengths should refer to the same subsample of stars. Such a set is provided. A distance modulus based on RR Lyrae variables agrees with the Cepheid result.
We derive a distance of $15.8pm0.4$ Mpc to the archetypical Seyfert 1 galaxy NGC 4151 based on the near-infrared Cepheid Period-Luminosity relation and new Hubble Space Telescope multiband imaging. This distance determination, based on measurements of 35 long-period ($P > 25$d) Cepheids, will support the absolute calibration of the supermassive black hole mass in this system, as well as studies of the dynamics of the feedback or feeding of its active galactic nucleus.
The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counterpart led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be $sim$10 from the nucleus of the S0 galaxy NGC 4993. We report here the luminosity distance to this galaxy using two independent methods. (1) Based on our MUSE/VLT measurement of the heliocentric redshift ($z_{rm helio}=0.009783pm0.000023$) we infer the systemic recession velocity of the NGC 4993 group of galaxies in the cosmic microwave background (CMB) frame to be $v_{rm CMB}=3231 pm 53$ km s$^{-1}$. Using constrained cosmological simulations we estimate the line-of-sight peculiar velocity to be $v_{rm pec}=307 pm 230$ km s$^{-1}$, resulting in a cosmic velocity of $v_{rm cosmic}=2924 pm 236$ km s$^{-1}$ ($z_{rm cosmic}=0.00980pm 0.00079$) and a distance of $D_z=40.4pm 3.4$ Mpc assuming a local Hubble constant of $H_0=73.24pm 1.74$ km s$^{-1}$ Mpc$^{-1}$. (2) Using Hubble Space Telescope measurements of the effective radius (15.5 $pm$ 1.5) and contained intensity and MUSE/VLT measurements of the velocity dispersion, we place NGC 4993 on the Fundamental Plane (FP) of E and S0 galaxies. Comparing to a frame of 10 clusters containing 226 galaxies, this yields a distance estimate of $D_{rm FP}=44.0pm 7.5$ Mpc. The combined redshift and FP distance is $D_{rm NGC 4993}= 41.0pm 3.1$ Mpc. This electromagnetic distance estimate is consistent with the independent measurement of the distance to GW170817 as obtained from the gravitational-wave signal ($D_{rm GW}= 43.8^{+2.9}_{-6.9}$ Mpc) and confirms that GW170817 occurred in NGC 4993.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا