The current manuscript highlights the preparation of NiFe2O4 nanoparticles by adopting sol-gel auto combustion route. The prime focus of this study is to investigate the impact of gamma irradiation on the microstructural, morphological, functional, optical and magnetic characteristics. The resulted NiFe2O4 products have been characterized employing numerous instrumental equipments such as FESEM, XRD, UV visible spectroscopy, FTIR and PPMS for a variety of gamma ray doses (0 kGy, 25 kGy and 100 kGy). FESEM micrographs illustrate the aggregation of ferrite nanoparticles in pristine NiFe2O4 product having an average particle size of 168 nm and the surface morphology is altered after exposure to gamma-irradiation. XRD spectra have been analyzed employing Rietveld method and the results of the XRD investigation reveal the desired phases (cubic spinel phases) of NiFe2O4 with observing other transitional phases. Several microstructural parameters such as bond length, bond angle, hopping length etc. have been determined from the analysis of Rietveld method. This study reports that the gamma irradiations demonstrate a great influence on optical bandgap energy and it varies from 1.80 and 1.89 eV evaluated via K M function. FTIR measurement depicts a proof for the persistence of Ni-O and Fe-O stretching vibrations within the respective products and thus indicating the successful development of NiFe2O4. The saturation magnetization (MS) of pristine Ni ferrite product is noticed to be 28.08 emug-1. A considerable increase in MS is observed in case of low gamma-dose (25 kGy) and a decrement nature is disclosed after the result of high dose of gamma irradiation (100kGy).