No Arabic abstract
The existence of a constant density of two-level systems (TLS) was proposed as the basis of some intriguing universal aspects of glasses at ultra-low temperatures. Here we ask whether their existence is necessary for explaining the universal density of states quasi-localized modes (QLM) in glasses at ultra-low temperatures. A careful examination of the QLM that exist in a generic atomistic model of a glass former reveals at least two types of them, each exhibiting a different density of states, one depending on the frequency as $omega^3$ and the other as $omega^4$. The properties of the glassy energy landscape that is responsible for the two types of modes is examined here, explaining the analytic feature responsible for the creations of (at least) two families of QLMs. Although adjacent wells certainly exist in the complex energy landscape of glasses, doubt is cast on the relevance of TLS for the universal density of QLMs.
Tunnelling Two-Level Systems (TLS) dominate the physics of glasses at low temperatures. Yet TLS are extremely rare and it is extremely difficult to directly observe them $it{in , silico}$. It is thus crucial to develop simple structural predictors that can provide markers for determining if a TLS is present in a given glass region. It has been speculated that Quasi-Localized vibrational Modes (QLM) are closely related to TLS, and that one can extract information about TLS from QLM. In this work we address this possibility. In particular, we investigate the degree to which a linear or non-linear vibrational mode analysis can predict the location of TLS independently found by energy landscape exploration. We find that even though there is a notable spatial correlation between QLM and TLS, in general TLS are strongly non-linear and their global properties cannot be predicted by a simple normal mode analysis.
As shown by early studies on mean-field models of the glass transition, the geometrical features of the energy landscape provide fundamental information on the dynamical transition at the Mode-Coupling temperature $T_d$. We show that active particles can serve as a useful tool for gaining insight into the topological crossover in model glass-formers. In such systems the landmark of the minima-to-saddle transition in the potential energy landscape, taking place in the proximity of $T_d$, is the critical slowing down of dynamics. Nevertheless, the critical slowing down is a bottleneck for numerical simulations and the possibility to take advantage of the new smart algorithms capable to thermalize down in the glass phase is attractive. Our proposal is to consider configurations equilibrated below the threshold and study their dynamics in the presence of a small amount of self-propulsion. As exemplified here from the study of the p-spin model, the presence of self-propulsion gives rise to critical off-equilibrium equal-time correlations at the minima-to-saddles crossover, correlations which are not hindered by the sluggish glassy dynamics.
This paper presents an analytical study of the coexistence of different transport regimes in quasi-one-dimensional surface-disordered waveguides (or electron conductors). To elucidate main features of surface scattering, the case of two open modes (channels) is considered in great detail. Main attention is paid to the transmission in dependence on various parameters of the model with two types of rough-surface profiles (symmetric and antisymmetric). It is shown that depending on the symmetry, basic mechanisms of scattering can be either enhanced or suppressed. As a consequence, different transport regimes can be realized. Specifically, in the waveguide with symmetric rough boundaries, there are ballistic, localized and coexistence transport regimes. In the waveguide with antisymmetric roughness of lateral walls, another regime of the diffusive transport can arise. Our study allows to reveal the role of the so-called square-gradient scattering which is typically neglected in literature, however, can give a strong impact to the transmission.
We review the field of the glass transition, glassy dynamics and aging from a statistical mechanics perspective. We give a brief introduction to the subject and explain the main phenomenology encountered in glassy systems, with a particular emphasis on spatially heterogeneous dynamics. We review the main theoretical approaches currently available to account for these glassy phenomena, including recent developments regarding mean-field theory of liquids and glasses, novel computational tools, and connections to the jamming transition. Finally, the physics of aging and off-equilibrium dynamics exhibited by glassy materials is discussed.
We provide a compact derivation of the static and dynamic equations for infinite-dimensional particle systems in the liquid and glass phases. The static derivation is based on the introduction of an auxiliary disorder and the use of the replica method. The dynamic derivation is based on the general analogy between replicas and the supersymmetric formulation of dynamics. We show that static and dynamic results are consistent, and follow the Random First Order Transition scenario of mean field disordered glassy systems.