Do you want to publish a course? Click here

Balancing Rational and Other-Regarding Preferences in Cooperative-Competitive Environments

152   0   0.0 ( 0 )
 Added by Dmitry Ivanov
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent reinforcement learning studies extensively explore the interplay between cooperative and competitive behaviour in mixed environments. Unlike cooperative environments where agents strive towards a common goal, mixed environments are notorious for the conflicts of selfish and social interests. As a consequence, purely rational agents often struggle to achieve and maintain cooperation. A prevalent approach to induce cooperative behaviour is to assign additional rewards based on other agents well-being. However, this approach suffers from the issue of multi-agent credit assignment, which can hinder performance. This issue is efficiently alleviated in cooperative setting with such state-of-the-art algorithms as QMIX and COMA. Still, when applied to mixed environments, these algorithms may result in unfair allocation of rewards. We propose BAROCCO, an extension of these algorithms capable to balance individual and social incentives. The mechanism behind BAROCCO is to train two distinct but interwoven components that jointly affect each agents decisions. Our meta-algorithm is compatible with both Q-learning and Actor-Critic frameworks. We experimentally confirm the advantages over the existing methods and explore the behavioural aspects of BAROCCO in two mixed multi-agent setups.



rate research

Read More

Training a multi-agent reinforcement learning (MARL) algorithm is more challenging than training a single-agent reinforcement learning algorithm, because the result of a multi-agent task strongly depends on the complex interactions among agents and their interactions with a stochastic and dynamic environment. We propose an algorithm that boosts MARL training using the biased action information of other agents based on a friend-or-foe concept. For a cooperative and competitive environment, there are generally two groups of agents: cooperative-agents and competitive-agents. In the proposed algorithm, each agent updates its value function using its own action and the biased action information of other agents in the two groups. The biased joint action of cooperative agents is computed as the sum of their actual joint action and the imaginary cooperative joint action, by assuming all the cooperative agents jointly maximize the target agents value function. The biased joint action of competitive agents can be computed similarly. Each agent then updates its own value function using the biased action information, resulting in a biased value function and corresponding biased policy. Subsequently, the biased policy of each agent is inevitably subjected to recommend an action to cooperate and compete with other agents, thereby introducing more active interactions among agents and enhancing the MARL policy learning. We empirically demonstrate that our algorithm outperforms existing algorithms in various mixed cooperative-competitive environments. Furthermore, the introduced biases gradually decrease as the training proceeds and the correction based on the imaginary assumption vanishes.
Learning when to communicate and doing that effectively is essential in multi-agent tasks. Recent works show that continuous communication allows efficient training with back-propagation in multi-agent scenarios, but have been restricted to fully-cooperative tasks. In this paper, we present Individualized Controlled Continuous Communication Model (IC3Net) which has better training efficiency than simple continuous communication model, and can be applied to semi-cooperative and competitive settings along with the cooperative settings. IC3Net controls continuous communication with a gating mechanism and uses individualized rewards foreach agent to gain better performance and scalability while fixing credit assignment issues. Using variety of tasks including StarCraft BroodWars explore and combat scenarios, we show that our network yields improved performance and convergence rates than the baselines as the scale increases. Our results convey that IC3Net agents learn when to communicate based on the scenario and profitability.
123 - Ryan Lowe , Yi Wu , Aviv Tamar 2017
We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.
71 - Gabriel Istrate 2021
We investigate Kantian equilibria in finite normal form games, a class of non-Nashian, morally motivated courses of action that was recently proposed in the economics literature. We highlight a number of problems with such equilibria, including computational intractability, a high price of miscoordination, and problematic extension to general normal form games. We give such a generalization based on concept of program equilibria, and point out that that a practically relevant generalization may not exist. To remedy this we propose some general, intuitive, computationally tractable, other-regarding equilibria that are special cases Kantian equilibria, as well as a class of courses of action that interpolates between purely self-regarding and Kantian behavior.
Action and observation delays exist prevalently in the real-world cyber-physical systems which may pose challenges in reinforcement learning design. It is particularly an arduous task when handling multi-agent systems where the delay of one agent could spread to other agents. To resolve this problem, this paper proposes a novel framework to deal with delays as well as the non-stationary training issue of multi-agent tasks with model-free deep reinforcement learning. We formally define the Delay-Aware Markov Game that incorporates the delays of all agents in the environment. To solve Delay-Aware Markov Games, we apply centralized training and decentralized execution that allows agents to use extra information to ease the non-stationarity issue of the multi-agent systems during training, without the need of a centralized controller during execution. Experiments are conducted in multi-agent particle environments including cooperative communication, cooperative navigation, and competitive experiments. We also test the proposed algorithm in traffic scenarios that require coordination of all autonomous vehicles to show the practical value of delay-awareness. Results show that the proposed delay-aware multi-agent reinforcement learning algorithm greatly alleviates the performance degradation introduced by delay. Codes and demo videos are available at: https://github.com/baimingc/delay-aware-MARL.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا