Do you want to publish a course? Click here

Realization of exciton-mediated optical spin-orbit interaction in organic microcrystalline resonators

117   0   0.0 ( 0 )
 Added by Xuekai Ma
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ability to control the spin-orbit interaction of light in optical microresonators is of fundamental importance for future photonics. Organic microcrystals, due to their giant optical anisotropy, play a crucial role in spin-optics and topological photonics. Here we realize controllable and wavelength-dependent Rashba-Dresselhaus spin-orbit interaction, attributed to the anisotropic excitonic response in an optical microcavity filled with an organic microcrystalline. We also investigate the transition of the spin-orbit interaction from dominant photonic type caused by the splitting of the transverse-electric and transverse-magnetic modes to spin-orbit interaction of the Rashba-Dresselhaus type. The interplay of the two allows us to engineer the spin-orbit interaction of light in organic microcavities, which besides its fundamental interest promises applications in spin-controlled on-chip integrated nanophotonic elements, towards exploiting non-magnetic and low-cost spin-photonic devices.



rate research

Read More

Spin-orbit interaction of light can lead to the so-called optical mirages, i.e. a perceived displacement in the position of a particle due to the spiraling structure of the scattered light. In electric dipoles, the maximum displacement is subwavelength and does not depend on the optical properties of the scatterer. Here we will show that the optical mirage in high refractive index dielectric nanoparticles depends strongly on the ratio between electric and magnetic dipolar responses. When the dual symmetry is satisfied (at the first Kerker condition), there is a considerable enhancement (far above the wavelength) of the spin-orbit optical mirage which can be related to the emergence of an optical vortex in the backscattering direction.
182 - Shubo Wang , Bo Hou , Weixin Lu 2018
Many novel properties of non-Hermitian systems are found at or near the exceptional points-branch points of complex energy surfaces at which eigenvalues and eigenvectors coalesce. In particular, higher-order exceptional points can result in optical structures that are ultrasensitive to external perturbations. Here we show that an arbitrary order exceptional point can be achieved in a simple system consisting of identical resonators placed near a waveguide. Unidirectional coupling between any two chiral dipolar states of the resonators mediated by the waveguide mode leads to the exceptional point, which is protected by the transverse spin-momentum locking of the guided wave and is independent of the positions of the resonators. Various analytic response functions of the resonators at the exceptional points are experimentally manifested in the microwave regime. The enhancement of sensitivity to external perturbations near the exceptional point is also numerically and analytically demonstrated.
We study theoretically the ground states of topological defects in a spinor four-component condensate of cold indirect excitons. We analyze possible ground state solutions for different configurations of vortices and half-vortices. We show that if only Rashba or Dreselhaus spin-orbit interaction (SOI) for electrons is present the stable states of topological defects can represent a cylindrically symmetric half-vortex or half vortex-antivortex pairs, or a non-trivial pattern with warped vortices. In the presence of both of Rashba and Dresselhaus SOI the ground state of a condensate represents a stripe phase and vortex type solutions become unstable.
In the presence of Rashba-Dresselhaus coupling, strong spin-orbit interactions in liquid crystal optical cavities result in a distinctive spin-split entangled dispersion. Spin coherence between such modes give rise to an optical persistent-spin-helix. In this letter, we introduce optical gain in such a system, by dispersing a molecular dye in a liquid-crystal microcavity. We demonstrate both lasing in the Rashba-Dresselhaus regime and the emergence of an optical persistent spin helix.
Topological insulators are a class of electronic materials exhibiting robust edge states immune to perturbations and disorder. This concept has been successfully adapted in photonics, where topologically nontrivial waveguides and topological lasers were developed. However, the exploration of topological properties in a given photonic system is limited to a fabricated sample, without the flexibility to reconfigure the structure in-situ. Here, we demonstrate an all-optical realization of the orbital Su-Schrieffer-Heeger (SSH) model in a microcavity exciton-polariton system, whereby a cavity photon is hybridized with an exciton in a GaAs quantum well. We induce a zigzag potential for exciton polaritons all-optically, by shaping the nonresonant laser excitation, and measure directly the eigenspectrum and topological edge states of a polariton lattice in a nonlinear regime of bosonic condensation. Furthermore, taking advantage of the tunability of the optically induced lattice we modify the intersite tunneling to realize a topological phase transition to a trivial state. Our results open the way to study topological phase transitions on-demand in fully reconfigurable hybrid photonic systems that do not require sophisticated sample engineering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا