Do you want to publish a course? Click here

Mass loss law for red giant stars in simple population globular clusters

79   0   0.0 ( 0 )
 Added by Marco Tailo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The amount of mass lost by stars during the red-giant branch (RGB) phase is one of the main parameters to understand and correctly model the late stages of stellar evolution. Nevertheless, a fully-comprehensive knowledge of the RGB mass loss is still missing. Galactic Globular Clusters (GCs) are ideal targets to derive empirical formulations of mass loss, but the presence of multiple populations with different chemical compositions has been a major challenge to constrain stellar masses and RGB mass losses. Recent work has disentangled the distinct stellar populations along the RGB and the horizontal branch (HB) of 46 GCs, thus providing the possibility to estimate the RGB mass loss of each stellar population. The mass losses inferred for the stellar populations with pristine chemical composition (called first-generation or 1G stars) tightly correlate with cluster metallicity. This finding allows us to derive an empirical RGB mass-loss law for 1G stars. In this paper we investigate seven GCs with no evidence of multiple populations and derive the RGB mass loss by means of high-precision {it Hubble-Space Telescope} photometry and accurate synthetic photometry. We find a cluster-to-cluster variation in the mass loss ranging from $sim$0.1 to $sim$0.3 $M_{odot}$. The RGB mass loss of simple-population GCs correlates with the metallicity of the host cluster. The discovery that simple-population GCs and 1G stars of multiple population GCs follow similar mass-loss vs. metallicity relations suggests that the resulting mass-loss law is a standard outcome of stellar evolution.



rate research

Read More

The location of Galactic Globular Clusters (GC) stars on the horizontal branch (HB) should mainly depend on GC metallicity, the first parameter, but it is actually the result of complex interactions between the red giant branch (RGB) mass loss, the coexistence of multiple stellar populations with different helium content, and the presence of a second parameter which produces dramatic differences in HB morphology of GCs of similar metallicity and ages (like the pair M3--M13). In this work, we combine the entire dataset from the Hubble Space Telescope Treasury survey and stellar evolutionary models, to analyse the HBs of 46 GCs. For the first time in a large sample of GCs, we generate population synthesis models, where the helium abundances for the first and the extreme second generations are constrained using independent measurements based on RGB stars. The main results are: 1) the mass loss of first generation stars is tightly correlated to cluster metallicity. 2) the location of helium enriched stars on the HB is reproduced only by adopting a higher RGB mass loss than for the first generation. The difference in mass loss correlates with helium enhancement and cluster mass. 3) A model of pre-main sequence disc early loss, previously developed by the authors, explains such a mass loss increase and is consistent with the findings of multiple-population formation models predicting that populations more enhanced in helium tend to form with higher stellar densities and concentrations. 4) Helium-enhancement and mass-loss both contribute to the second parameter.
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters have nearly identical metallicities ([Fe/H] ~ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display alpha and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > -1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.
Spreads in light element abundances among stars (a.k.a. multiple populations) are observed in nearly all globular clusters. One way to map such chemical variations using high-precision photometry is to employ a suitable combination of stellar magnitudes in the F275W, F336W, F438W, and F814W filters (the so called chromosome map), to maximise the separation between the different multiple populations. For each individual cluster its chromosome map separates the so-called first population -with metal abundance patterns typical of field halo stars- from the second population, that displays distinctive abundance variations among a specific group of light-elements. Surprisingly, the distribution of first population stars in chromosome maps of several -but not all- clusters has been found to be more extended than expected from purely observational errors, suggesting a chemically inhomogeneous origin. We consider here three clusters with similar metallicity ([Fe/H]~-1.3) and different chromosome maps, namely NGC 288, M 3 and NGC 2808, and argue that the first population extended distribution (as observed in two of these clusters) is due to spreads of the initial helium abundance and possibly a small range of nitrogen abundances as well. The presence of a range of initial He and N abundances amongst stars traditionally thought to have homogeneous composition, plus the fact that these spreads appear only in some clusters, challenge the scenarios put forward so far to explain the multiple population phenomenon.
High resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in Halpha, and Ca K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in Halpha generally appears in stars with T_eff < 4500 K and log L/L_sun > 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for Halpha reveals the onset of chromospheric expansion in stars more luminous than log L/L_sun ~ 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in Halpha most probably due to decreased T_eff and changing atmospheric structure. The Ca K_3 outflow velocities are larger than shown by Halpha at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in Halpha than RGB objects. While the Halpha velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92 shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the `second-parameter effect.
Multiple stellar populations (MPs) are a distinct characteristic of Globular Clusters (GCs). Their general properties have been widely studied among main sequence, red giant branch (RGB) and horizontal branch (HB) stars, but a common framework is still missing at later evolutionary stages. We studied the MP phenomenon along the AGB sequences in 58 GCs, observed with the Hubble Space Telescope in ultraviolet (UV) and optical filters. By using UV-optical color-magnitude diagrams, we selected the AGB members of each cluster and identified the AGB candidates of the metal-enhanced population in type II GCs. We studied the photometric properties of AGB stars and compared them to theoretical models derived from synthetic spectra analysis. We observe the following features: i) the spread of AGB stars in photometric indices sensitive to variations of light-elements and helium is typically larger than that expected from photometric errors; ii) the fraction of metal-enhanced stars in the AGB is lower than in the RGB in most of the type II GCs; iii) the fraction of 1G stars derived from the chromosome map of AGB stars in 15 GCs is larger than that of RGB stars; v) the AGB/HB frequency correlates with the average mass of the most helium-enriched population. These findings represent a clear evidence of the presence of MPs along the AGB of Galactic GCs and indicate that a significant fraction of helium-enriched stars, which have lower mass in the HB, does not evolve to the AGB phase, leaving the HB sequence towards higher effective temperatures, as predicted by the AGB-manque scenario.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا