The Peaks of Eternal Light (PELs), that are largely unshaded regions mostly at the lunar south pole, have been suggested as a source of solar power for mining the water and other volatiles in the nearby permanently dark regions. As mining is a power-intensive activity, it is interesting to estimate the maximum solar power that could be generated at the PELs. Here we use average percentage illumination maps for a range of heights above the local topography from 2 m to 2 km to determine the total power available as a function of time of lunar day. Overshadowing of highly illuminated areas by towers placed in sunward locations (at a given time of day) limits the total power to much smaller values than the highly illuminated area would suggest. We find that for near-term realizable towers (up to 20 m), the upper limit to the time-averaged power available is ~55 MW at >70% illumination, and ~6 MW at >90% illumination. For the more distant future a maximum time-averaged power of order 21000 MW at >70% illumination could be realizable for towers up to 2 km in height, and ~5270 MW, respectively, at 90% illumination. Towers 1 km high provide about a factor 2.7 times less power. The variation with lunar time of day ranges from a factor of 1.1 to ~ 3.