Do you want to publish a course? Click here

MUSE narrow field mode observations of the central kinematics of M15

63   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of the stellar kinematics of the centre of the core collapsed globular cluster M15 obtained with the MUSE integral field spectrograph on the VLT operating in narrow field mode. Thanks to the use of adaptive optics, we obtain a spatial resolution of 0.1arcsec and are able to reliably measure the radial velocities of 864 stars within 8 arcsec of the centre of M15 thus providing the largest sample of radial velocities ever obtained for the innermost regions of this system. Combined with previous observations of M15 using MUSE in wide field mode and literature data, we find that the central kinematics of M15 are complex with the rotation axis of the core of M15 offset from the rotation axis of the bulk of the cluster. While this complexity has been suggested by previous work, we confirm it at higher significance and in more detail.



rate research

Read More

Early-type galaxies show a strong size evolution with redshift. This evolution is explained by fast in-situ star formation at high-$z$ followed by a late mass assembly mostly driven by minor mergers that deposit stars primarily in the outer halo. We aim to identify structural components of the Hydra I cD galaxy NGC 3311 to investigate the connection between the central galaxy and the surrounding stellar halo. We map the line-of-sight velocity distribution (LOSVD) using MUSE pointings covering NGC 3311 out to $25$ kpc. Combining photometric and spectroscopic data, we model the LOSVD maps using a finite mixture distribution, including four non-concentric, nearly isothermal spheroids, with different line-of-sight systemic velocities $V$, velocity dispersions $sigma$, and higher order Gauss-Hermite moments $h_3$ and $h_4$. The comparison of the correlations between $h_3$ and $h_4$ with $V/sigma$ with simulations indicates that NGC 3311 assembled mainly through dry mergers. The $sigma$ profile rises to $simeq 400$ km s$^{text -1}$ at 20 kpc indicating that stars there were stripped from progenitors orbiting in the cluster core. The finite mixture distribution modeling supports three inner components related to the central galaxy and a fourth component with large effective radius ($51$ kpc) and velocity dispersion ($327$ km s$^{text{-1}}$) consistent with a cD envelope. We find that the cD envelope is offset from the center of NGC 3311 both spatially (8.6 kpc) and in velocity ($Delta V = 204$ kms$^{-1}$), but coincide with the cluster core X-ray isophotes and the mean velocity of galaxies. Also, the envelope contributes to the broad wings of the LOSVD measured by large $h_4$ within 10 kpc. The cD envelope of NGC 3311 is dynamically associated with the cluster core, which in Hydra I is in addition displaced from the cluster center, presumably due to a recent subcluster merger.
88 - F. Kirsten 2012
Intermediate mass black holes (IMBHs) with expected masses M_BH ~ 10^4 M_sun are thought to bridge the gap between stellar mass black holes (M_BH ~ 3 - 100 M_sun) and supermassive black holes found at the centre of galaxies (M_BH > 10^6 M_sun). Until today, no IMBH has been confirmed observationally. The most promising objects to host an IMBH as their central mass are globular clusters. Here, we present high sensitivity multi-epoch 1.6 GHz very long baseline interferometry observations of the globular cluster M15 that has been suggested to host an IMBH. Assuming the IMBH to be accreting matter from its surrounding we expect to detect it as a point source moving with the global motion of the cluster. However, we do not detect any such object within a radius of 6000 AU of the cluster centre in any of the five observations spread over more than one year. This rules out any variability of the putative IMBH on the time scale of one to two months. To get the most stringent upper limit for the flux density of the putative IMBH we concatenate the data of all five epochs. In this data we measure a 3{sigma} upper flux limit of 10 {mu}Jy for a central source. We employ the fundamental plane of black hole activity to estimate the mass of the central IMBH candidate. Based on previous X-ray observations of M15 our measurements indicate a 3{sigma} upper mass limit of ~500 M_sun.
We have observed the oxygen-rich SNR 1E 0102.2-7219 with the integral field spectrograph WiFeS at Siding Spring Observatory and discovered sulfur-rich ejecta for the first time. Follow-up deep DDT observations with MUSE on the VLT (8100 s on source) have led to the additional discovery of fast- moving hydrogen as well as argon-rich and chlorine-rich material. The detection of fast-moving hydrogen knots challenges the interpretation that the progenitor of 1E 0102 was a compact core of a Wolf-Rayet star that had shed its entire envelope. In addition to the detection of hydrogen and the products of oxygen-burning, this unprecedented sharp (0.2 spaxel size at ~0.7 seeing) and deep MUSE view of an oxygen-rich SNR in the Magellanic Clouds reveals further exciting discoveries, including [Fe xiv]{lambda}5303 and [Fe xi]{lambda}7892 emission, which we associate with the forward shock. We present this exciting data set and discuss some of its implications for the explosion mechanism and nucleosynthesis of the associated supernova.
Here we describe a simple, efficient, and most importantly fully operational point-spread-function(PSF)-reconstruction approach for laser-assisted ground layer adaptive optics (GLAO) in the frame of the Multi Unit Spectroscopic Explorer (MUSE) Wide Field Mode. Based on clear astrophysical requirements derived by the MUSE team and using the functionality of the current ESO Adaptive Optics Facility we aim to develop an operational PSF-reconstruction (PSFR) algorithm and test it both in simulations and using on-sky data. The PSFR approach is based on a Fourier description of the GLAO correction to which the specific instrumental effects of MUSE Wide Field Mode (pixel size, internal aberrations, etc.) have been added. It was first thoroughly validated with full end-to-end simulations. Sensitivity to the main atmospheric and AO system parameters was analysed and the code was re-optimised to account for the sensitivity found. Finally, the optimised algorithm was tested and commissioned using more than one year of on-sky MUSE data. We demonstrate with an on-sky data analysis that our algorithm meets all the requirements imposed by the MUSE scientists, namely an accuracy better than a few percent on the critical PSF parameters including full width at half maximum and global PSF shape through the kurtosis parameter of a Moffat function. The PSFR algorithm is publicly available and is used routinely to assess the MUSE image quality for each observation. It can be included in any post-processing activity which requires knowledge of the PSF.
We present a new integral-field spectroscopic dataset of the central part of the Orion Nebula (M 42), observed with the MUSE instrument at the ESO VLT. We reduced the data with the public MUSE pipeline. The output products are two FITS cubes with a spatial size of ~5.9x4.9 (corresponding to ~0.76 pc x 0.63 pc) and a contiguous wavelength coverage of 4595...9366 Angstrom, spatially sampled at 0.2. We provide t
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا