Getting good speedup -- let alone high parallel efficiency -- for parallel-in-time (PinT) integration examples can be frustratingly difficult. The high complexity and large number of parameters in PinT methods can easily (and unintentionally) lead to numerical experiments that overestimate the algorithms performance. In the tradition of Baileys article Twelve ways to fool the masses when giving performance results on parallel computers, we discuss and demonstrate pitfalls to avoid when evaluating performance of PinT methods. Despite being written in a light-hearted tone, this paper is intended to raise awareness that there are many ways to unintentionally fool yourself and others and that by avoiding these fallacies more meaningful PinT performance results can be obtained.