Do you want to publish a course? Click here

Multimode optical parametric amplification in the phase-sensitive regime

71   0   0.0 ( 0 )
 Added by Gaetano Frascella
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phase-sensitive optical parametric amplification of squeezed states helps to overcome detection loss and noise and thus increase the robustness of sub-shot-noise sensing. Because such techniques, e.g., imaging and spectroscopy, operate with multimode light, multimode amplification is required. Here we find the optimal methods for multimode phase-sensitive amplification and verify them in an experiment where a pumped second-order nonlinear crystal is seeded with a Gaussian coherent beam. Phase-sensitive amplification is obtained by tightly focusing the seed into the crystal, rather than seeding with close-to-plane waves. This suggests that phase-sensitive amplification of sub-shot-noise images should be performed in the near field. Similar recipe can be formulated for the time and frequency, which makes this work relevant for quantum-enhanced spectroscopy.



rate research

Read More

Breaking the symmetry in a coupled wave system can result in unusual amplification behavior. In the case of difference parametric amplification the resonant pump frequency is equal to the difference, instead of the sum, frequency of the normal modes. We show that sign reversal in the symmetry relation of parametric coupling give rise to difference parametric amplification as a dual of optical parametric amplification. For optical systems, our result can potentially be used for efficient XUV amplification.
We discuss the possible cooling of different phonon modes via three wave mixing interactions of vibrational and optical modes. Since phonon modes exhibit a variety of dispersion relations or frequency spectra with diverse spatial structures, depending on the shape and size of the sample, we formulate our theory in terms of relevant spatial mode functions for the interacting fields in any given geometry. We discuss the possibility of Dicke like collective effects in phonon cooling and present explicit results for simultaneous cooling of two phonon modes via the anti-Stokes up
We demonstrate optical coherence tomography based on an SU(1,1) nonlinear interferometer with high-gain parametric down-conversion. For imaging and sensing applications, this scheme promises to outperform previous experiments working at low parametric gain, since higher photon fluxes provide lower integration times for obtaining high-quality images. In this way one can avoid using single-photon detectors or CCD cameras with very high sensitivities, and standard spectrometers can be used instead. Other advantages are: higher sensitivity to small loss and amplification before detection, so that the detected light power considerably exceeds the probing one.
461 - Jing Wang , Jingui Ma , Peng Yuan 2015
We experimentally study a new kind of parametric noise that is initiated from signal scattering and enhanced through optical parametric amplification. Such scattering noise behaves similarly to the parametric super-fluorescence in the spatial domain, yet is typically much stronger. In the time domain, it inherits the chirp of signal pulses and can be well compressed. We demonstrate that this scattering-initiated parametric noise has little influence on the amplified pulse contrast but can degrade the conversion efficiency substantially.
The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition is at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the quantum injected optical parametric amplification, that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS demonstration was carried out experimentally at room temperature with $Mgeq $ $10^{4}$. This result elicited an extended study on quantum cloning, quantum amplification and quantum decoherence. The related theory is outlined in the article where several experiments are reviewed such as the test on the no-signaling theorem and the dynamical interaction of the photon MQS with a Bose-Einstein condensate. In addition, the consideration of the Micro - Macro entanglement regime is extended into the Macro - Macro condition. The MQS interference patterns for large M were revealed in the experiment and the bipartite Micro-Macro entanglement was also demonstrated for a limited number of generated particles: $Mprecsim 12$. At last, the perspectives opened by this new method are considered in the view of further studies on quantum foundations and quantum measurement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا