No Arabic abstract
We prove that strength and slice rank of homogeneous polynomials of degree $d geq 5$ over an algebraically closed field of characteristic zero coincide generically. To show this, we establish a conjecture of Catalisano, Geramita, Gimigliano, Harbourne, Migliore, Nagel and Shin concerning dimensions of secant varieties of the varieties of reducible homogeneous polynomials. These statements were already known in degrees $2leq dleq 7$ and $d=9$.
The strength of a homogeneous polynomial (or form) $f$ is the smallest length of an additive decomposition expressing it whose summands are reducible forms. We show that the set of forms with bounded strength is not always Zariski-closed. In particular, if the ground field has characteristic $0$, we prove that the set of quartics with strength $leq3$ is not Zariski-closed for a large number of variables.
In [9], Migliore, Miro-Roig and Nagel, proved that if $R = mathbb{K}[x,y,z]$, where $mathbb{K}$ is a field of characteristic zero, and $I=(L_1^{a_1},dots,L_r^{a_4})$ is an ideal generated by powers of 4 general linear forms, then the multiplication by the square $L^2$ of a general linear form $L$ induces an homomorphism of maximal rank in any graded component of $R/I$. More recently, Migliore and Miro-Roig proved in [8] that the same is true for any number of general linear forms, as long the powers are uniform. In addition, they conjecture that the same holds for arbitrary powers. In this paper we will solve this conjecture and we will prove that if $I=(L_1^{a_1},dots,L_r^{a_r})$ is an ideal of $R$ generated by arbitrary powers of any set of general linear forms, then the multiplication by the square $L^2$ of a general linear form $L$ induces an homomorphism of maximal rank in any graded component of $R/I$.
We determine the Waring ranks of all sextic binary forms using a Geometric Invariant Theory approach. In particular, we shed new light on a claim by E. B. Elliott at the end of the 19th century concerning the binary sextics with Waring rank 3.
We give a sufficient criterion for a lower bound of the cactus rank of a tensor. Then we refine that criterion in order to be able to give an explicit sufficient condition for a non-redundant decomposition of a tensor to be minimal and unique.
A symmetric tensor may be regarded as a partially symmetric tensor in several different ways. These produce different notions of rank for the symmetric tensor which are related by chains of inequalities. By exploiting algebraic tools such as apolarity theory, we show how the study of the simultaneous symmetric rank of partial derivatives of the homogeneous polynomial associated to the symmetric tensor can be used to prove equalities among different partially symmetric ranks. This approach aims to understand to what extent the symmetries of a tensor affect its rank. We apply this to the special cases of binary forms, ternary and quaternary cubics, monomials, and elementary symmetric polynomials.