Do you want to publish a course? Click here

X-ray Spectra of Circumgalactic Medium Around Star-Forming Galaxies: Connecting Simulations to Observations

55   0   0.0 ( 0 )
 Added by Aditi Vijayan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The hot component of the circum-galactic medium (CGM) around star forming galaxies is detected as diffuse X-ray emission. The X-ray spectra from the CGM depend on the temperature and metallicity of the emitting plasma, providing important information about the feeding and feedback of the galaxy. The observed spectra are commonly fitted using simple 1-Temperature (1-T) or 2-T models. However, the actual temperature distribution of the gas can be complex because of the interaction between galactic outflows and halo gas. Here we demonstrate this by analysing 3-D hydrodynamical simulations of the CGM with a realistic outflow model. We investigate the physical properties of the simulated hot CGM, which shows a broad distribution in density, temperature, and metallicity. By constructing and fitting the simulated spectra, we show that, while the 1-T and 2-T models are able to fit the synthesized spectra reasonably well, the inferred temperature(s) bear little physical meaning. Instead, we propose a log-normal distribution as a more physical model. The log-normal model better fits the simulated spectra while reproducing the gas temperature distribution. We also show that when the star formation rate is high, the spectra inside the bi-conical outflows are distinct from that outside, as outflows are generally hotter and more metal-enriched. Finally, we produce mock spectra for future missions with the eV-level spectral resolution, such as Athena, Lynx, and HUBS.



rate research

Read More

We simulate stacked observations of nearby hot X-ray coronae associated with galaxies in the EAGLE and Illustris-TNG hydrodynamic simulations. A forward modeling pipeline is developed to predict 4-year eROSITA observations and stacked image analysis, including the effects of instrumental and astrophysical backgrounds. We propose an experiment to stack z~0.01 galaxies separated by specific star-formation rate (sSFR) to examine how the hot (T>=10^6 K) circumgalactic medium (CGM) differs for high- and low-sSFR galaxies. The simulations indicate that the hot CGM of low-mass (M_*~10^{10.5} Msol), high-sSFR (defined as the top one-third ranked by sSFR) central galaxies will be detectable to a galactocentric radius r~30-50 kpc. Both simulations predict lower luminosities at fixed stellar mass for the low-sSFR galaxies (the lower third of sSFR) with Illustris-TNG predicting 3x brighter coronae around high-sSFR galaxies than EAGLE. Both simulations predict detectable emission out to r~150-200 kpc for stacks centered on high-mass (M_*~10^{11.0} Msol) galaxies, with EAGLE predicting brighter X-ray halos. The extended soft X-ray luminosity correlates strongly and positively with the mass of circumgalactic gas within the virial radius (f_{CGM}). Prior analyses of both simulations have established that f_{CGM} is reduced by expulsive feedback driven mainly by black hole growth, which quenches galaxy growth by inhibiting replenishment of the ISM. Both simulations predict that eROSITA stacks should not only conclusively detect and resolve the hot CGM around L^* galaxies for the first time, but provide a powerful probe of how the baryon cycle operates, for which there remains an absence of consensus between state-of-the-art simulations.
We estimate the detectability of X-ray metal-line emission from the circumgalactic medium (CGM) of galaxies over a large halo mass range ($mathrm{M}_{mathrm{200c}} =10^{11.5}$-$10^{14.5},mathrm{M}_{odot}$) using the EAGLE simulations. With the XRISM Resolve instrument, a few bright (K-$alpha$ or Fe L-shell) lines from $mathrm{M}_{mathrm{200c}} gtrsim 10^{13},mathrm{M}_{odot}$ haloes should be detectable. Using the Athena X-IFU or the Lynx Main Array, emission lines (especially from O$,$VII and O$,$VIII) from the inner CGM of $mathrm{M}_{mathrm{200c}} gtrsim10^{12.5},mathrm{M}_{odot}$ haloes become detectable, and intragroup and intracluster gas will be detectable out to the virial radius. With the Lynx Ultra-high Resolution Array, the inner CGM of haloes hosting $mathrm{L}_{*}$ galaxies is accessible. These estimates do assume long exposure times ($sim 1,$Ms) and large spatial bins ($sim1$-$10,mathrm{arcmin}^{2}$). We also investigate the properties of the gas producing this emission. CGM emission is dominated by collisionally ionized (CI) gas, and tends to come from halo centres. The gas is typically close to the maximum emissivity temperature for CI gas ($mathrm{T}_mathrm{peak}$), and denser and more metal-rich than the bulk of the CGM at a given distance from the central galaxy. However, for the K-$alpha$ lines, emission can come from hotter gas in haloes where the virialized, volume-filling gas is hotter than $mathrm{T}_mathrm{peak}$. Trends of emission with halo mass can largely be explained by differences in virial temperature. Differences between lines generally result from the different behaviour of the emissivity as a function of temperature of the K-$alpha$, He-$alpha$-like, and Fe~L-shell lines. We conclude that upcoming X-ray missions will open up a new window onto the hot CGM.
Galaxies are surrounded by massive gas reservoirs (i.e. the circumgalactic medium; CGM) which play a key role in their evolution. The properties of the CGM, which are dependent on a variety of internal and environmental factors, are often inferred from absorption line surveys which rely on a limited number of single lines-of-sight. In this work we present an analysis of 28 galaxy haloes selected from the Auriga project, a cosmological magneto-hydrodynamical zoom-in simulation suite of isolated Milky Way-mass galaxies, to understand the impact of CGM diversity on observational studies. Although the Auriga haloes are selected to populate a narrow range in halo mass, our work demonstrates that the CGM of L* galaxies is extremely diverse: column densities of commonly observed species span ~3-4 dex and their covering fractions range from ~5 to 90 per cent. Despite this diversity, we identify the following correlations: 1) the covering fractions (CF) of hydrogen and metals of the Auriga haloes positively correlate with stellar mass, 2) the CF of H I, C IV, and Si II anticorrelate with active galactic nucleus luminosity due to ionization effects, and 3) the CF of H I, C IV, and Si II positively correlate with galaxy disc fraction due to outflows populating the CGM with cool and dense gas. The Auriga sample demonstrates striking diversity within the CGM of L* galaxies, which poses a challenge for observations reconstructing CGM characteristics from limited samples, and also indicates that long-term merger assembly history and recent star formation are not the dominant sculptors of the CGM.
We study the emission from the hot interstellar medium in a sample of nearby late type galaxies defined in Paper I. Our sample covers a broad range of star formation rates, from ~0.1 Msun/yr to ~17 Msun/yr and stellar masses, from ~3x10^8 Msun to ~6x10^10 Msun. We take special care of systematic effects and contamination from bright and faint compact sources. We find that in all galaxies at least one optically thin thermal emission component is present in the unresolved emission, with the average temperature of <kT>= 0.24 keV. In about ~1/3 of galaxies, a second, higher temperature component is required, with the <kT>= 0.71 keV. Although statistically significant variations in temperature between galaxies are present, we did not find any meaningful trends with the stellar mass or star formation rate of the host galaxy. The apparent luminosity of the diffuse emission in the 0.5-2 keV band linearly correlates with the star formation rate with the scale factor of Lx/SFRapprox 8.3x10^38 erg/s per Msun/yr, of which in average ~30-40% is likely produced by faint compact sources of various types. We attempt to estimate the bolometric luminosity of the gas and and obtained results differing by an order of magnitude, log(Lbol/SFR)sim39-40, depending on whether intrinsic absorption in star-forming galaxies was allowed or not. Our theoretically most accurate, but in practice the most model dependent result for the intrinsic bolometric luminosity of ISM is Lbol/SFRsim 1.5x10^40 erg/s per Msun/yr. Assuming that core collapse supernovae are the main source of energy, it implies that epsilon_SNsim5x10^-2 (E_SN/10^51)^-1 of mechanical energy of supernovae is converted into thermal energy of ISM.
We study the diffuse X-ray luminosity ($L_X$) of star forming galaxies using 2-D axisymmetric hydrodynamical simulations and analytical considerations of supernovae (SNe) driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of $L_X$ with star formation rate (SFR) as $L_X propto$ SFR$^2$ for SFR $gtrsim 1$ M$_odot$yr$^{-1}$, and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the sub-linear behaviour of the $L_X-$SFR relation as well as a large scatter in the diffuse X-ray emission for low SFRs ($lesssim$ few M$_odot$yr$^{-1}$). Our results point out that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for detection of the elusive CGM.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا