Do you want to publish a course? Click here

Search for sub-millicharged particles at J-PARC

131   0   0.0 ( 0 )
 Added by Jae Hyeok Yoo
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We studied the feasibility of an experiment searching for sub-millicharged particles ($chi$s) using 30 GeV proton fixed-target collisions at J-PARC. The detector is composed of two layers of stacked scintillator bars and PMTs and is proposed to be installed 280 m from the target. The main background is a random coincidence between two layers due to dark counts in PMTs, which can be reduced to a negligible level using the timing of the proton beam. With $N_textrm{POT}=10^{22}$ which corresponds to running the experiment for three years, the experiment provides sensitivity to $chi$s with the charge down to $5times10^{-5}$ in $m_chi<0.2$ $textrm{GeV}/textrm{c}^2$ and $8times10^{-4}$ in $m_chi<1.6$ $textrm{GeV}/textrm{c}^2$. This is the regime largely uncovered by the previous experiments. We also explored a few detector designs to achieve an optimal sensitivity to $chi$s. The photoelectron yield is the main driver, but the sensitivity does not have a strong dependence on the detector configuration in the sub-millicharge regime.



rate research

Read More

387 - Suyong Choi 2020
We propose a new experiment sensitive to the detection of millicharged particles produced at the $30$ GeV proton fixed-target collisions at J-PARC. The potential site for the experiment is B2 of the Neutrino Monitor building, $280$ m away from the target. With $textrm{N}_textrm{POT}=10^{22}$, the experiment can provide sensitivity to particles with electric charge $3times10^{-4},e$ for mass less than $0.2$ $textrm{GeV}/textrm{c}^2$ and $1.5times10^{-3},e$ for mass less than $1.6$ $textrm{GeV}/textrm{c}^2$. This brings a substantial extension to the current constraints on the charge and the mass of such particles.
Particles with electric charge q < 10^(-3)e and masses in the range 1--100 MeV/c^2 are not excluded by present experiments. An experiment uniquely suited to the production and detection of such millicharged particles has been carried out at SLAC. This experiment is sensitive to the infrequent excitation and ionization of matter expected from the passage of such a particle. Analysis of the data rules out a region of mass and charge, establishing, for example, a 95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.
308 - A. Ball 2020
We report on a search for elementary particles with charges much smaller than the electron charge using a data sample of proton-proton collisions provided by the CERN Large Hadron Collider in 2018, corresponding to an integrated luminosity of 37.5 fb$^{-1}$ at a center-of-mass energy of 13 TeV. A prototype scintillator-based detector is deployed to conduct the first search at a hadron collider sensitive to particles with charges ${leq}0.1e$. The existence of new particles with masses between 20 and 4700 MeV is excluded at 95% confidence level for charges between $0.006e$ and $0.3e$, depending on their mass. New sensitivity is achieved for masses larger than $700$ MeV.
202 - M.Harada , S.Hasegawa , Y.Kasugai 2015
On April 2015, the J-PARC E56 (JSNS2: J-PARC Sterile Neutrino Search using neutrinos from J-PARC Spallation Neutron Source) experiment officially obtained stage-1 approval from J-PARC. We have since started to perform liquid scintillator R&D for improving energy resolution and fast neutron rejection. Also, we are studying Avalanche Photo-Diodes (SiPM) inside the liquid scintillator. In addition to the R&D work, a background measurement for the proton beam bunch timing using a small liquid scintillator volume was planned, and the safety discussions for the measurement have been done. This report describes the status of the R&D work and the background measurements, in addition to the milestones required before stage-2 approval.
The J-PARC E56 experiment aims to search for sterile neutrinos at the J-PARC Materials and Life Science Experimental Facility (MLF). In order to examine the feasibility of the experiment, we measured the background rates of different detector candidate sites, which are located at the third floor of the MLF, using a detector consisting of plastic scintillators with a fiducial mass of 500 kg. The result of the measurements is described in this article. The gammas and neutrons induced by the beam as well as the backgrounds from the cosmic rays were measured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا