No Arabic abstract
Existing graph neural networks (GNNs) largely rely on node embeddings, which represent a node as a vector by its identity, type, or content. However, graphs with unlabeled nodes widely exist in real-world applications (e.g., anonymized social networks). Previous GNNs either assign random labels to nodes (which introduces artefacts to the GNN) or assign one embedding to all nodes (which fails to distinguish one node from another). In this paper, we analyze the limitation of existing approaches in two types of classification tasks, graph classification and node classification. Inspired by our analysis, we propose two techniques, Dynamic Labeling and Preferential Dynamic Labeling, that satisfy desired properties statistically or asymptotically for each type of the task. Experimental results show that we achieve high performance in various graph-related tasks.
We introduce the framework of continuous-depth graph neural networks (GNNs). Neural graph differential equations (Neural GDEs) are formalized as the counterpart to GNNs where the input-output relationship is determined by a continuum of GNN layers, blending discrete topological structures and differential equations. The proposed framework is shown to be compatible with static GNN models and is extended to dynamic and stochastic settings through hybrid dynamical system theory. Here, Neural GDEs improve performance by exploiting the underlying dynamics geometry, further introducing the ability to accommodate irregularly sampled data. Results prove the effectiveness of the proposed models across applications, such as traffic forecasting or prediction in genetic regulatory networks.
While many existing graph neural networks (GNNs) have been proven to perform $ell_2$-based graph smoothing that enforces smoothness globally, in this work we aim to further enhance the local smoothness adaptivity of GNNs via $ell_1$-based graph smoothing. As a result, we introduce a family of GNNs (Elastic GNNs) based on $ell_1$ and $ell_2$-based graph smoothing. In particular, we propose a novel and general message passing scheme into GNNs. This message passing algorithm is not only friendly to back-propagation training but also achieves the desired smoothing properties with a theoretical convergence guarantee. Experiments on semi-supervised learning tasks demonstrate that the proposed Elastic GNNs obtain better adaptivity on benchmark datasets and are significantly robust to graph adversarial attacks. The implementation of Elastic GNNs is available at url{https://github.com/lxiaorui/ElasticGNN}.
The pre-training on the graph neural network model can learn the general features of large-scale networks or networks of the same type by self-supervised methods, which allows the model to work even when node labels are missing. However, the existing pre-training methods do not take network evolution into consideration. This paper proposes a pre-training method on dynamic graph neural networks (PT-DGNN), which uses dynamic attributed graph generation tasks to simultaneously learn the structure, semantics, and evolution features of the graph. The method includes two steps: 1) dynamic sub-graph sampling, and 2) pre-training with dynamic attributed graph generation task. Comparative experiments on three realistic dynamic network datasets show that the proposed method achieves the best results on the link prediction fine-tuning task.
The complexity and non-Euclidean structure of graph data hinder the development of data augmentation methods similar to those in computer vision. In this paper, we propose a feature augmentation method for graph nodes based on topological regularization, in which topological structure information is introduced into end-to-end model. Specifically, we first obtain topology embedding of nodes through unsupervised representation learning method based on random walk. Then, the topological embedding as additional features and the original node features are input into a dual graph neural network for propagation, and two different high-order neighborhood representations of nodes are obtained. On this basis, we propose a regularization technique to bridge the differences between the two different node representations, eliminate the adverse effects caused by the topological features of graphs directly used, and greatly improve the performance. We have carried out extensive experiments on a large number of datasets to prove the effectiveness of our model.
As large-scale graphs become increasingly more prevalent, it poses significant computational challenges to process, extract and analyze large graph data. Graph coarsening is one popular technique to reduce the size of a graph while maintaining essential properties. Despite rich graph coarsening literature, there is only limited exploration of data-driven methods in the field. In this work, we leverage the recent progress of deep learning on graphs for graph coarsening. We first propose a framework for measuring the quality of coarsening algorithm and show that depending on the goal, we need to carefully choose the Laplace operator on the coarse graph and associated projection/lift operators. Motivated by the observation that the current choice of edge weight for the coarse graph may be sub-optimal, we parametrize the weight assignment map with graph neural networks and train it to improve the coarsening quality in an unsupervised way. Through extensive experiments on both synthetic and real networks, we demonstrate that our method significantly improves common graph coarsening methods under various metrics, reduction ratios, graph sizes, and graph types. It generalizes to graphs of larger size ($25times$ of training graphs), is adaptive to different losses (differentiable and non-differentiable), and scales to much larger graphs than previous work.