No Arabic abstract
Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that energetic rigidity, in which all non-trivial deformations raise the energy of a structure, is a more useful notion of rigidity in practice than two more commonly used rigidity tests: Maxwell-Calladine constraint counting (first-order rigidity) and second-order rigidity. We find that constraint counting robustly predicts energetic rigidity only when the system has no states of self stress. When the system has states of self stress, we show that second-order rigidity can imply energetic rigidity in systems that are not considered rigid based on constraint counting, and is even more reliable than shear modulus. We also show that there may be systems for which neither first nor second-order rigidity imply energetic rigidity. The formalism of energetic rigidity unifies our understanding of mechanical stability and also suggests new avenues for material design.
This is the second paper devoted to energetic rigidity, in which we apply our formalism to examples in two dimensions: underconstrained random regular spring networks, vertex models, and jammed packings of soft particles. Spring networks and vertex models are both highly underconstrained, and first-order constraint counting does not predict their rigidity, but second-order rigidity does. In contrast, spherical jammed packings are overconstrained and thus first-order rigid, meaning that constraint counting is equivalent to energetic rigidity as long as prestresses in the system are sufficiently small. Aspherical jammed packings on the other hand have been shown to be jammed at hypostaticity, which we use to argue for a modified constraint counting for systems that are energetically rigid at quartic order.
The evolution of porous structure and mechanical properties of binary glasses under tensile loading were examined using molecular dynamics simulations. We consider vitreous systems obtained in the process of phase separation after a rapid isochoric quench of a glass-forming liquid to a temperature below the glass transition. The porous structure in undeformed samples varies from a connected porous network to a random distribution of isolated pores upon increasing average glass density. We find that at small strain, the elastic modulus follows a power-law dependence on the average glass density and the pore size distribution remains nearly the same as in quiescent samples. Upon further loading, the pores become significantly deformed and coalesce into larger voids that leads to formation of system-spanning empty regions associated with breaking of the material.
Mechanical metamaterials actuators achieve pre-determined input--output operations exploiting architectural features encoded within a single 3D printed element, thus removing the need of assembling different structural components. Despite the rapid progress in the field, there is still a need for efficient strategies to optimize metamaterial design for a variety of functions. We present a computational method for the automatic design of mechanical metamaterial actuators that combines a reinforced Monte Carlo method with discrete element simulations. 3D printing of selected mechanical metamaterial actuators shows that the machine-generated structures can reach high efficiency, exceeding human-designed structures. We also show that it is possible to design efficient actuators by training a deep neural network, eliminating the need for lengthy mechanical simulations. The elementary actuators devised here can be combined to produce metamaterial machines of arbitrary complexity for countless engineering applications.
Motivated by the formal argument that a non-zero shear modulus is the result of averaging over a constrained configurations space, we demonstrate that the shear modulus calculated over a range of temperatures and averaging times can be expressed (relative to its infinite frequency value) as a single function of the mean squared displacement. This result is shown to hold for both a glass-liquid and a crystal-liquid system.
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization (ECNLE theory) of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small, and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regards to both theory and simulation.