Do you want to publish a course? Click here

Sustainable Federated Learning

106   0   0.0 ( 0 )
 Added by Basak Guler
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Potential environmental impact of machine learning by large-scale wireless networks is a major challenge for the sustainability of future smart ecosystems. In this paper, we introduce sustainable machine learning in federated learning settings, using rechargeable devices that can collect energy from the ambient environment. We propose a practical federated learning framework that leverages intermittent energy arrivals for training, with provable convergence guarantees. Our framework can be applied to a wide range of machine learning settings in networked environments, including distributed and federated learning in wireless and edge networks. Our experiments demonstrate that the proposed framework can provide significant performance improvement over the benchmark energy-agnostic federated learning settings.



rate research

Read More

Machine learning and wireless communication technologies are jointly facilitating an intelligent edge, where federated edge learning (FEEL) is a promising training framework. As wireless devices involved in FEEL are resource limited in terms of communication bandwidth, computing power and battery capacity, it is important to carefully schedule them to optimize the training performance. In this work, we consider an over-the-air FEEL system with analog gradient aggregation, and propose an energy-aware dynamic device scheduling algorithm to optimize the training performance under energy constraints of devices, where both communication energy for gradient aggregation and computation energy for local training are included. The consideration of computation energy makes dynamic scheduling challenging, as devices are scheduled before local training, but the communication energy for over-the-air aggregation depends on the l2-norm of local gradient, which is known after local training. We thus incorporate estimation methods into scheduling to predict the gradient norm. Taking the estimation error into account, we characterize the performance gap between the proposed algorithm and its offline counterpart. Experimental results show that, under a highly unbalanced local data distribution, the proposed algorithm can increase the accuracy by 4.9% on CIFAR-10 dataset compared with the myopic benchmark, while satisfying the energy constraints.
Federated learning (FL), invented by Google in 2016, has become a hot research trend. However, enabling FL in wireless networks has to overcome the limited battery challenge of mobile users. In this regard, we propose to apply unmanned aerial vehicle (UAV)-empowered wireless power transfer to enable sustainable FL-based wireless networks. The objective is to maximize the UAV transmit power efficiency, via a joint optimization of transmission time and bandwidth allocation, power control, and the UAV placement. Directly solving the formulated problem is challenging, due to the coupling of variables. Hence, we leverage the decomposition technique and a successive convex approximation approach to develop an efficient algorithm, namely UAV for sustainable FL (UAV-SFL). Finally, simulations illustrate the potential of our proposed UAV-SFL approach in providing a sustainable solution for FL-based wireless networks, and in reducing the UAV transmit power by 32.95%, 63.18%, and 78.81% compared with the benchmarks.
In this paper, we are interested in what we term the federated private bandits framework, that combines differential privacy with multi-agent bandit learning. We explore how differential privacy based Upper Confidence Bound (UCB) methods can be applied to multi-agent environments, and in particular to federated learning environments both in `master-worker and `fully decentralized settings. We provide a theoretical analysis on the privacy and regret performance of the proposed methods and explore the tradeoffs between these two.
The lottery ticket hypothesis (LTH) claims that a deep neural network (i.e., ground network) contains a number of subnetworks (i.e., winning tickets), each of which exhibiting identically accurate inference capability as that of the ground network. Federated learning (FL) has recently been applied in LotteryFL to discover such winning tickets in a distributed way, showing higher accuracy multi-task learning than Vanilla FL. Nonetheless, LotteryFL relies on unicast transmission on the downlink, and ignores mitigating stragglers, questioning scalability. Motivated by this, in this article we propose a personalized and communication-efficient federated lottery ticket learning algorithm, coined CELL, which exploits downlink broadcast for communication efficiency. Furthermore, it utilizes a novel user grouping method, thereby alternating between FL and lottery learning to mitigate stragglers. Numerical simulations validate that CELL achieves up to 3.6% higher personalized task classification accuracy with 4.3x smaller total communication cost until convergence under the CIFAR-10 dataset.
In the Internet of Things, learning is one of most prominent tasks. In this paper, we consider an Internet of Things scenario where federated learning is used with simultaneous transmission of model data and wireless power. We investigate the trade-off between the number of communication rounds and communication round time while harvesting energy to compensate the energy expenditure. We formulate and solve an optimization problem by considering the number of local iterations on devices, the time to transmit-receive the model updates, and to harvest sufficient energy. Numerical results indicate that maximum ratio transmission and zero-forcing beamforming for the optimization of the local iterations on devices substantially boost the test accuracy of the learning task. Moreover, maximum ratio transmission instead of zero-forcing provides the best test accuracy and communication round time trade-off for various energy harvesting percentages. Thus, it is possible to learn a model quickly with few communication rounds without depleting the battery.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا