Do you want to publish a course? Click here

Search for Lorentz Invariance Violation from stacked Gamma-Ray Burst spectral lag data

269   0   0.0 ( 0 )
 Added by Shantanu Desai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A number of works have claimed detections of a turn-over in the spectral lag data for individual Gamma-Ray Bursts (GRBs), caused by an energy-dependent speed of light, which could be a possible manifestation of Lorentz invariance violation (LIV). Here, we stack the spectral lag data from a total of 37 GRBs (with a total of 91 measurements), to verify if the combined data is consistent with a unified model consisting of intrinsic astrophysical emission, along with another contribution due to LIV. We then carry out Bayesian model comparison to ascertain if this combined spectral lag data shows a preference for an energy-dependent speed of light, as compared to only an intrinsic astrophysical emission mechanism. We do not find a decisive evidence for such an energy-dependent speed of light for two different models of LIV. When we assume a constant intrinsic lag coupled with an unknown intrinsic scatter, we do not find any evidence for LIV. However, when we use GRB-dependent parameters to model the intrinsic emission, we get decisive evidence for LIV violation. We then carry out a search for LIV Standard Model Extension using this dataset as well as an independent search using a separate dataset consisting of rest-frame spectral lags. Finally, none of the models considered here with any of the aforementioned assumptions provide a good fit to the stacked spectral lag data, indicating that there is still missing Physics in the model for intrinsic spectral lags.



rate research

Read More

The spectral lags of gamma-ray bursts (GRBs) have been viewed as the most promising probes of the possible violations of Lorentz invariance (LIV). However, these constraints usually depend on the assumption of the unknown intrinsic time lag in different energy bands and the use of a single highest-energy photon. A new approach to test the LIV effects has been proposed by directly fitting the spectral lag behavior of a GRB with a well-defined transition from positive lags to negative lags. This method simultaneously provides a reasonable formulation of the intrinsic time lag and robust lower limits on the quantum-gravity energy scales ($E_{rm QG}$). In this work, we perform a global fitting to the spectral lag data of GRB~190114C by considering the possible LIV effects based on a Bayesian approach. We then derive limits on $E_{rm QG}$ and the coefficients of the Standard Model Extension. The Bayes factors output in our analysis shows a very strong evidence for the spectral-lag transition in GRB~190114C. Our constraints on a variety of isotropic and anisotropic coefficients for LIV are somewhat weaker than existing bounds, but they can be viewed as comparatively robust and have the promise to complement existing LIV constraints. The observations of GRBs with higher-energy emissions and higher temporal resolutions will contribute to a better formulation of the intrinsic time lag and more rigorous LIV constraints in the dispersive photon sector.
Possible violations of Lorentz invariance (LIV) have been investigated for a long time using the observed spectral lags of gamma-ray bursts (GRBs). However, these generally have relied on using a single photon in the highest energy range. Furthermore, the search for LIV lags has been hindered by our ignorance concerning the intrinsic time lag in different energy bands. GRB 160625B, the only burst so far with a well-defined transition from $positive$ lags to $negative$ lags provides a unique opportunity to put new constraints on LIV. Using multi-photon energy bands we consider the contributions to the observed spectral lag from both the intrinsic time lag and the lag by LIV effects, and assuming the intrinsic time lag to have a positive dependence on the photon energy, we obtain robust limits on LIV by directly fitting the spectral lag data of GRB 160625B. Here we show that these robust limits on the quantum gravity energy scales are $E_{rm QG,1}geq0.5times10^{16}$ GeV for the linear, and $E_{rm QG,2}geq1.4times10^{7}$ GeV for the quadratic LIV effects, respectively. In addition, we give for the first time a reasonable formulation of the intrinsic energy-dependent time lag.
173 - Michael Daniel 2015
The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum gravity predict there could be an effective refractive index of the vacuum; the introduction of an energy dependent dispersion to photons could in turn lead to an observable Lorentz invariance violation signature. Whilst a very small effect on local scales the effect will be cumulative, and so for very high energy particles that travel very large distances the difference in arrival times could become sufficiently large to be detectable. This proceedings will look at testing for such Lorentz invariance violation (LIV) signatures in the astronomical lightcurves of gamma-ray emitting objects, with particular notice being given to the prospects for LIV testing with, the next generation observatory, the Cherenkov Telescope Array.
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the QG energy scale (the energy scale that LIV-inducing QG effects become important, E_QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB090510 and are E_{QG,1}>7.6 times the Planck energy (E_Pl) and E_{QG,2}>1.3 x 10^11 GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of ~2. Our results disfavor any class of models requiring E_{QG,1} lesssim E_Pl.
Some Quantum Gravity (QG) theories allow for a violation of Lorentz invariance (LIV), manifesting as a dependence of the velocity of light in vacuum on its energy. If such a dependence exists, then photons of different energies emitted together by a distant source will arrive at the Earth at different times. High-energy (GeV) transient emissions from distant astrophysical sources such as Gamma-ray Bursts (GRBs) and Active Galaxy Nuclei can be used to search for and constrain LIV. The Fermi collaboration has previously analyzed two GRBs in order to put constraints on the dispersion parameter in vacuum, and on the energy scale at which QG effects causing LIV may arise. We used three different methods on four bright GRBs observed by the Fermi-LAT to get more stringent and robust constraints. No delays have been detected and strong limits on the QG energy scale are derived: for linear dispersion we set tight constraints placing the QG energy scale above the Planck mass; a quadratic leading LIV effect is also constrained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا