Supersymmetric domain walls in maximal 6D gauged supergravity I


Abstract in English

We find a large class of supersymmetric domain wall solutions from six-dimensional $N=(2,2)$ gauged supergravity with various gauge groups. In general, the embedding tensor lives in $mathbf{144}_c$ representation of the global symmetry $SO(5,5)$. We explicitly construct the embedding tensors in $mathbf{15}^{-1}$ and $overline{mathbf{40}}^{-1}$ representations of $GL(5)sim mathbb{R}^+times SL(5)subset SO(5,5)$ leading to $CSO(p,q,5-p-q)$ and $CSO(p,q,4-p-q)ltimesmathbb{R}^4_{boldsymbol{s}}$ gauge groups, respectively. These gaugings can be obtained from $S^1$ reductions of seven-dimensional gauged supergravity with $CSO(p,q,5-p-q)$ and $CSO(p,q,4-p-q)$ gauge groups. As in seven dimensions, we find half-supersymmetric domain walls for purely magnetic or purely electric gaugings with the embedding tensors in $mathbf{15}^{-1}$ or $overline{mathbf{40}}^{-1}$ representations, respectively. In addition, for dyonic gauge groups with the embedding tensors in both $mathbf{15}^{-1}$ and $overline{mathbf{40}}^{-1}$ representations, the domain walls turn out to be $frac{1}{4}$-supersymmetric as in the seven-dimensional analogue. By the DW/QFT duality, these solutions are dual to maximal and half-maximal super Yang-Mills theories in five dimensions. All of the solutions can be uplifted to seven dimensions and further embedded in type IIB or M-theories by the well-known consistent truncation of the seven-dimensional $N=4$ gauged supergravity.

Download