No Arabic abstract
We show the formal equivalence of linearised self-attention mechanisms and fast weight controllers from the early 90s, where a ``slow neural net learns by gradient descent to program the ``fast weights of another net through sequences of elementary programming instructions which are additive outer products of self-invented activation patterns (today called keys and values). Such Fast Weight Programmers (FWPs) learn to manipulate the contents of a finite memory and dynamically interact with it. We infer a memory capacity limitation of recent linearised softmax attention variants, and replace the purely additive outer products by a delta rule-like programming instruction, such that the FWP can more easily learn to correct the current mapping from keys to values. The FWP also learns to compute dynamically changing learning rates. We also propose a new kernel function to linearise attention which balances simplicity and effectiveness. We conduct experiments on synthetic retrieval problems as well as standard machine translation and language modelling tasks which demonstrate the benefits of our methods.
Transformers with linearised attention (linear Transformers) have demonstrated the practical scalability and effectiveness of outer product-based Fast Weight Programmers (FWPs) from the 90s. However, the original FWP formulation is more general than the one of linear Transformers: a slow neural network (NN) continually reprograms the weights of a fast NN with arbitrary NN architectures. In existing linear Transformers, both NNs are feedforward and consist of a single layer. Here we explore new variations by adding recurrence to the slow and fast nets. We evaluate our novel recurrent FWPs (RFWPs) on two synthetic algorithmic tasks (code execution and sequential ListOps), Wikitext-103 language models, and on the Atari 2600 2D game environment. Our models exhibit properties of Transformers and RNNs. In the reinforcement learning setting, we report large improvements over LSTM in several Atari games. Our code is public.
Humans can quickly associate stimuli to solve problems in novel contexts. Our novel neural network model learns state representations of facts that can be composed to perform such associative inference. To this end, we augment the LSTM model with an associative memory, dubbed Fast Weight Memory (FWM). Through differentiable operations at every step of a given input sequence, the LSTM updates and maintains compositional associations stored in the rapidly changing FWM weights. Our model is trained end-to-end by gradient descent and yields excellent performance on compositional language reasoning problems, meta-reinforcement-learning for POMDPs, and small-scale word-level language modelling.
Despite their ubiquity in core AI fields like natural language processing, the mechanics of deep attention-based neural networks like the Transformer model are not fully understood. In this article, we present a new perspective towards understanding how Transformers work. In particular, we show that the dot-product attention that is the core of the Transformers operation can be characterized as a kernel learning method on a pair of Banach spaces. In particular, the Transformers kernel is characterized as having an infinite feature dimension. Along the way we consider an extension of the standard kernel learning problem to a binary setting, where data come from two input domains and a response is defined for every cross-domain pair. We prove a new representer theorem for these binary kernel machines with non-Mercer (indefinite, asymmetric) kernels (implying that the functions learned are elements of reproducing kernel Banach spaces rather than Hilbert spaces), and also prove a new universal approximation theorem showing that the Transformer calculation can learn any binary non-Mercer reproducing kernel Banach space pair. We experiment with new kernels in Transformers, and obtain results that suggest the infinite dimensionality of the standard Transformer kernel is partially responsible for its performance. This papers results provide a new theoretical understanding of a very important but poorly understood model in modern machine~learning.
Transformers, composed of multiple self-attention layers, hold strong promises toward a generic learning primitive applicable to different data modalities, including the recent breakthroughs in computer vision achieving state-of-the-art (SOTA) standard accuracy with better parameter efficiency. Since self-attention helps a model systematically align different components present inside the input data, it leaves grounds to investigate its performance under model robustness benchmarks. In this work, we study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples. We use six different diverse ImageNet datasets concerning robust classification to conduct a comprehensive performance comparison of ViT models and SOTA convolutional neural networks (CNNs), Big-Transfer. Through a series of six systematically designed experiments, we then present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners. For example, with fewer parameters and similar dataset and pre-training combinations, ViT gives a top-1 accuracy of 28.10% on ImageNet-A which is 4.3x higher than a comparable variant of BiT. Our analyses on image masking, Fourier spectrum sensitivity, and spread on discrete cosine energy spectrum reveal intriguing properties of ViT attributing to improved robustness. Code for reproducing our experiments is available here: https://git.io/J3VO0.
This paper presents a general framework for norm-based capacity control for $L_{p,q}$ weight normalized deep neural networks. We establish the upper bound on the Rademacher complexities of this family. With an $L_{p,q}$ normalization where $qle p^*$, and $1/p+1/p^{*}=1$, we discuss properties of a width-independent capacity control, which only depends on depth by a square root term. We further analyze the approximation properties of $L_{p,q}$ weight normalized deep neural networks. In particular, for an $L_{1,infty}$ weight normalized network, the approximation error can be controlled by the $L_1$ norm of the output layer, and the corresponding generalization error only depends on the architecture by the square root of the depth.