Do you want to publish a course? Click here

Lottery Ticket Preserves Weight Correlation: Is It Desirable or Not?

100   0   0.0 ( 0 )
 Added by Ning Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In deep model compression, the recent finding Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018) pointed out that there could exist a winning ticket (i.e., a properly pruned sub-network together with original weight initialization) that can achieve competitive performance than the original dense network. However, it is not easy to observe such winning property in many scenarios, where for example, a relatively large learning rate is used even if it benefits training the original dense model. In this work, we investigate the underlying condition and rationale behind the winning property, and find that the underlying reason is largely attributed to the correlation between initialized weights and final-trained weights when the learning rate is not sufficiently large. Thus, the existence of winning property is correlated with an insufficient DNN pretraining, and is unlikely to occur for a well-trained DNN. To overcome this limitation, we propose the pruning & fine-tuning method that consistently outperforms lottery ticket sparse training under the same pruning algorithm and the same total training epochs. Extensive experiments over multiple deep models (VGG, ResNet, MobileNet-v2) on different datasets have been conducted to justify our proposals.



rate research

Read More

There have been long-standing controversies and inconsistencies over the experiment setup and criteria for identifying the winning ticket in literature. To reconcile such, we revisit the definition of lottery ticket hypothesis, with comprehensive and more rigorous conditions. Under our new definition, we show concrete evidence to clarify whether the winning ticket exists across the major DNN architectures and/or applications. Through extensive experiments, we perform quantitative analysis on the correlations between winning tickets and various experimental factors, and empirically study the patterns of our observations. We find that the key training hyperparameters, such as learning rate and training epochs, as well as the architecture characteristics such as capacities and residual connections, are all highly correlated with whether and when the winning tickets can be identified. Based on our analysis, we summarize a guideline for parameter settings in regards of specific architecture characteristics, which we hope to catalyze the research progress on the topic of lottery ticket hypothesis.
The lottery ticket hypothesis (Frankle and Carbin, 2018), states that a randomly-initialized network contains a small subnetwork such that, when trained in isolation, can compete with the performance of the original network. We prove an even stronger hypothesis (as was also conjectured in Ramanujan et al., 2019), showing that for every bounded distribution and every target network with bounded weights, a sufficiently over-parameterized neural network with random weights contains a subnetwork with roughly the same accuracy as the target network, without any further training.
We introduce a generalization to the lottery ticket hypothesis in which the notion of sparsity is relaxed by choosing an arbitrary basis in the space of parameters. We present evidence that the original results reported for the canonical basis continue to hold in this broader setting. We describe how structured pruning methods, including pruning units or factorizing fully-connected layers into products of low-rank matrices, can be cast as particular instances of this generalized lottery ticket hypothesis. The investigations reported here are preliminary and are provided to encourage further research along this direction.
The lottery ticket hypothesis (LTH) claims that randomly-initialized, dense neural networks contain (sparse) subnetworks that, when trained an equal amount in isolation, can match the dense networks performance. Although LTH is useful for discovering efficient network architectures, its three-step process -- pre-training, pruning, and re-training -- is computationally expensive, as the dense model must be fully pre-trained. Luckily, early-bird tickets can be discovered within neural networks that are minimally pre-trained, allowing for the creation of efficient, LTH-inspired training procedures. Yet, no theoretical foundation of this phenomenon exists. We derive an analytical bound for the number of pre-training iterations that must be performed for a winning ticket to be discovered, thus providing a theoretical understanding of when and why such early-bird tickets exist. By adopting a greedy forward selection pruning strategy, we directly connect the pruned networks performance to the loss of the dense network from which it was derived, revealing a threshold in the number of pre-training iterations beyond which high-performing subnetworks are guaranteed to exist. We demonstrate the validity of our theoretical results across a variety of architectures and datasets, including multi-layer perceptrons (MLPs) trained on MNIST and several deep convolutional neural network (CNN) architectures trained on CIFAR10 and ImageNet.
Lottery Ticket Hypothesis (LTH) raises keen attention to identifying sparse trainable subnetworks, or winning tickets, of training, which can be trained in isolation to achieve similar or even better performance compared to the full models. Despite many efforts being made, the most effective method to identify such winning tickets is still Iterative Magnitude-based Pruning (IMP), which is computationally expensive and has to be run thoroughly for every different network. A natural question that comes in is: can we transform the winning ticket found in one network to another with a different architecture, yielding a winning ticket for the latter at the beginning, without re-doing the expensive IMP? Answering this question is not only practically relevant for efficient once-for-all winning ticket finding, but also theoretically appealing for uncovering inherently scalable sparse patterns in networks. We conduct extensive experiments on CIFAR-10 and ImageNet, and propose a variety of strategies to tweak the winning tickets found from different networks of the same model family (e.g., ResNets). Based on these results, we articulate the Elastic Lottery Ticket Hypothesis (E-LTH): by mindfully replicating (or dropping) and re-ordering layers for one network, its corresponding winning ticket could be stretched (or squeezed) into a subnetwork for another deeper (or shallower) network from the same family, whose performance is nearly the same competitive as the latters winning ticket directly found by IMP. We have also thoroughly compared E-LTH with pruning-at-initialization and dynamic sparse training methods, and discuss the generalizability of E-LTH to different model families, layer types, or across datasets. Code is available at https://github.com/VITA-Group/ElasticLTH.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا