We investigate the chaotic behaviour of multiparticle systems, in particular DNA and graphene models, by applying methods of nonlinear dynamics. Using symplectic integration techniques, we present an extensive analysis of chaos in the Peyrard-Bishop-Dauxois (PBD) model of DNA. The chaoticity is quantified by the maximum Lyapunov exponent (mLE) across a spectrum of temperatures, and the effect of base pair (BP) disorder on the dynamics is studied. In addition to heterogeneity due to the ratio of adenine-thymine (AT) and guanine-cytosine (GC) BPs, the distribution of BPs in the sequence is analysed by introducing the alternation index $alpha$. An exact probability distribution for BP arrangements and $alpha$ is derived using Polya counting. The value of the mLE depends on the composition and arrangement of BPs in the strand, with a dependence on temperature. We probe regions of strong chaoticity using the deviation vector distribution, studying links between strongly nonlinear behaviour and the formation of bubbles. Randomly generated sequences and biological promoters are both studied. Further, properties of bubbles are analysed through molecular dynamics simulations. The distributions of bubble lifetimes and lengths are obtained, fitted with analytical expressions, and a physically justified threshold for considering a BP to be open is successfully implemented. In addition to DNA, we present analysis of the dynamical stability of a planar model of graphene, studying the mLE in bulk graphene as well as in graphene nanoribbons (GNRs). The stability of the material manifests in a very small mLE, with chaos being a slow process in graphene. For both armchair and zigzag edge GNRs, the mLE decreases with increasing width, asymptotically reaching the bulk behaviour. This dependence of the mLE on both energy density and ribbon width is fitted accurately with empirical expressions.