Do you want to publish a course? Click here

Distributed Generative Adversarial Networks for mmWaveChannel Modeling in Wireless UAV Networks

96   0   0.0 ( 0 )
 Added by Qianqian Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, a novel framework is proposed to enable air-to-ground channel modeling over millimeter wave (mmWave) frequencies in an unmanned aerial vehicle (UAV) wireless network. First, an effective channel estimation approach is developed to collect mmWave channel information allowing each UAV to train a local channel model via a generative adversarial network (GAN). Next, in order to share the channel information between UAVs in a privacy-preserving manner, a cooperative framework, based on a distributed GAN architecture, is developed to enable each UAV to learn the mmWave channel distribution from the entire dataset in a fully distributed approach. The necessary and sufficient conditions for the optimal network structure that maximizes the learning rate for information sharing in the distributed network are derived. Simulation results show that the learning rate of the proposed GAN approach will increase by sharing more generated channel samples at each learning iteration, but decrease given more UAVs in the network. The results also show that the proposed GAN method yields a higher learning accuracy, compared with a standalone GAN, and improves the average rate for UAV downlink communications by over 10%, compared with a baseline real-time channel estimation scheme.



rate research

Read More

In this paper, a novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network. First, an effective channel estimation approach is developed to collect mmWave channel information, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction. Next, in order to expand the application scenarios of the trained channel model into a broader spatial-temporal domain, a cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution in a fully-distributed manner. To guarantee an efficient learning process, necessary and sufficient conditions for the optimal UAV network topology that maximizes the learning rate for cooperative channel modeling are derived, and the optimal CGAN learning solution per UAV is subsequently characterized, based on the distributed network structure. Simulation results show that the proposed distributed CGAN approach is robust to the local training error at each UAV. Meanwhile, a larger airborne network size requires more communication resources per UAV to guarantee an efficient learning rate. The results also show that, compared with a stand-alone CGAN without information sharing and two other distributed schemes, namely: A multi-discriminator CGAN and a federated CGAN method, the proposed distributed CGAN approach yields a higher modeling accuracy while learning the environment, and it achieves a larger average data rate in the online performance of UAV downlink mmWave communications.
69 - Peiming Li , Jie Xu 2018
Unmanned aerial vehicles (UAVs) have emerged as a promising solution to provide wireless data access for ground users in various applications (e.g., in emergence situations). This paper considers a UAV-enabled wireless network, in which multiple UAVs are deployed as aerial base stations (BSs) to serve users distributed on the ground. Different from prior works that ignore UAVs backhaul connections, we practically consider that these UAVs are connected to the core network through a ground gateway node via rate-limited multi-hop wireless backhauls. We also consider that the air-to-ground (A2G) access links from UAVs to users and the air-to-air (A2A) backhaul links among UAVs are operated over orthogonal frequency bands. Under this setup, we aim to maximize the common (or minimum) throughput among all the ground users in the downlink of this network subject to the flow conservation constraints at the UAVs, by optimizing the UAVs deployment locations, jointly with the bandwidth and power allocation of both the access and backhaul links. However, the common throughput maximization is a non-convex optimization problem that is difficult to be solved optimally. To tackle this issue, we use the techniques of alternating optimization and successive convex programming (SCP) to obtain a locally optimal solution. Numerical results show that the proposed design significantly improves the common throughput among all ground users as compared to other benchmark schemes.
Cooperative transmission can greatly improve communication system performance by taking advantage of the broadcast nature of wireless channels. Most previous work on resource allocation for cooperation transmission is based on centralized control. In this paper, we propose two share auction mechanisms, the SNR auction and the power auction, to distributively coordinate the resource allocation among users. We prove the existence, uniqueness and effectiveness of the auction results. In particular, the SNR auction leads to a fair resource allocation among users, and the power auction achieves a solution that is close to the efficient allocation.
In this paper, we consider a scenario where an unmanned aerial vehicle (UAV) collects data from a set of sensors on a straight line. The UAV can either cruise or hover while communicating with the sensors. The objective is to minimize the UAVs total flight time from a starting point to a destination while allowing each sensor to successfully upload a certain amount of data using a given amount of energy. The whole trajectory is divided into non-overlapping data collection intervals, in each of which one sensor is served by the UAV. The data collection intervals, the UAVs speed and the sensors transmit powers are jointly optimized. The formulated flight time minimization problem is difficult to solve. We first show that when only one sensor is present, the sensors transmit power follows a water-filling policy and the UAVs speed can be found efficiently by bisection search. Then, we show that for the general case with multiple sensors, the flight time minimization problem can be equivalently reformulated as a dynamic programming (DP) problem. The subproblem involved in each stage of the DP reduces to handle the case with only one sensor node. Numerical results present insightful behaviors of the UAV and the sensors. Specifically, it is observed that the UAVs optimal speed is proportional to the given energy of the sensors and the inter-sensor distance, but inversely proportional to the data upload requirement.
109 - Yao Tang , Man Hon Cheung , 2019
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV assisted wireless communication system. Specifically, we consider the UAVs are deployed as aerial base stations to serve ground users who move between different regions. We maximize the throughput of ground users in the downlink communication by optimizing the UAVs trajectories, while taking into account the impact of the user mobility, propulsion energy consumption, and UAVs mutual interference. We formulate the problem as a route selection problem in an acyclic directed graph. Each vertex represents a task associated with a reward on the average user throughput in a region-time point, while each edge is associated with a cost on the energy propulsion consumption during flying and hovering. For the centralized trajectory design, we first propose the shortest path scheme that determines the optimal trajectory for the single UAV case. We also propose the centralized route selection (CRS) scheme to systematically compute the optimal trajectories for the more general multiple-UAV case. Due to the NP-hardness of the centralized problem, we consider the distributed trajectory design that each UAV selects its trajectory autonomously and propose the distributed route selection (DRS) scheme, which will converge to a pure strategy Nash equilibrium within a finite number of iterations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا