In this paper, we study the problem of designing a simultaneous mode, input, and state set-valued observer for a class of hidden mode switched nonlinear systems with bounded-norm noise and unknown input signals, where the hidden mode and unknown inputs can represent fault or attack models and exogenous fault/disturbance or adversarial signals, respectively. The proposed multiple-model design has three constituents: (i) a bank of mode-matched set-valued observers, (ii) a mode observer, and (iii) a global fusion observer. The mode-matched observers recursively find the sets of compatible states and unknown inputs conditioned on the mode being the true mode, while the mode observer eliminates incompatible modes by leveraging a residual-based criterion. Then, the global fusion observer outputs the estimated sets of states and unknown inputs by taking the union of the mode-matched set-valued estimates over all compatible modes. Moreover, sufficient conditions to guarantee the elimination of all false modes (i.e., mode-detectability) are provided and the effectiveness of our approach is demonstrated and compared with existing approaches using an illustrative example.