Do you want to publish a course? Click here

Molecular dynamics simulations of $^1$H NMR relaxation in Gd$^{3+}$--aqua

81   0   0.0 ( 0 )
 Added by Dilip Asthagiri
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atomistic molecular dynamics simulations are used to investigate $^1$H NMR $T_1$ relaxation of water from paramagnetic Gd$^{3+}$ ions in solution at 25$^{circ}$C. Simulations of the $T_1$ relaxivity dispersion function $r_1$ computed from the Gd$^{3+}$--$^1$H dipole--dipole autocorrelation function agree within $simeq 8$% of measurements in the range $f_0 simeq $ 5 $leftrightarrow$ 500 MHz, without any adjustable parameters in the interpretation of the simulations, and without any relaxation models. The simulation results are discussed in the context of the Solomon-Bloembergen-Morgan inner-sphere relaxation model, and the Hwang-Freed outer-sphere relaxation model. Below $f_0 lesssim $ 5 MHz, the simulation overestimates $r_1$ compared to measurements, which is used to estimate the zero-field electron-spin relaxation time. The simulations show potential for predicting $r_1$ at high frequencies in chelated Gd$^{3+}$ contrast-agents used for clinical MRI.



rate research

Read More

Molecular dynamics (MD) simulations are used to investigate $^1$H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk $n$-C$_5$H$_{12}$ to $n$-C$_{17}$H$_{36}$ hydrocarbons and bulk water. The MD simulations of the $^1$H NMR relaxation times $T_{1,2}$ in the fast motion regime where $T_1 = T_2$ agree with measured (de-oxygenated) $T_2$ data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion $D_T$ coefficients calculated using simulation configurations are well-correlated with measured diffusion data at ambient conditions. The agreement between the predicted and experimentally measured NMR relaxation times and diffusion coefficient also validate the forcefields used in the simulation. The molecular simulations naturally separate intramolecular from intermolecular dipole-dipole interactions helping bring new insight into the two NMR relaxation mechanisms as a function of molecular chain-length (i.e. carbon number). Comparison of the MD simulation results of the two relaxation mechanisms with traditional hard-sphere models used in interpreting NMR data reveals important limitations in the latter. With increasing chain length, there is substantial deviation in the molecular size inferred on the basis of the radius of gyration from simulation and the fitted hard-sphere radii required to rationalize the relaxation times. This deviation is characteristic of the local nature of the NMR measurement, one that is well-captured by molecular simulations.
The mechanism behind the $^1$H NMR frequency dependence of $T_1$ and the viscosity dependence of $T_2$ for polydisperse polymers and bitumen remains elusive. We elucidate the matter through NMR relaxation measurements of polydisperse polymers over an extended range of frequencies ($f_0 = 0.01 leftrightarrow$ 400 MHz) and viscosities ($eta = 385 leftrightarrow 102,000$ cP) using $T_{1}$ and $T_2$ in static fields, $T_{1}$ field-cycling relaxometry, and $T_{1rho}$ in the rotating frame. We account for the anomalous behavior of the log-mean relaxation times $T_{1LM} propto f_0$ and $T_{2LM} propto (eta/T)^{-1/2}$ with a phenomenological model of $^1$H-$^1$H dipole-dipole relaxation which includes a distribution in molecular correlation times and internal motions of the non-rigid polymer branches. We show that the model also accounts for the anomalous $T_{1LM}$ and $T_{2LM}$ in previously reported bitumen measurements. We find that molecular dynamics (MD) simulations of the $T_{1} propto f_0$ dispersion and $T_2$ of similar polymers simulated over a range of viscosities ($eta = 1 leftrightarrow 1,000$ cP) are in good agreement with measurements and the model. The $T_{1} propto f_0$ dispersion at high viscosities agrees with previously reported MD simulations of heptane confined in a polymer matrix, which suggests a common NMR relaxation mechanism between viscous polydisperse fluids and fluids under confinement, without the need to invoke paramagnetism.
166 - P. Wzietek 2015
A general expression is derived for the dipolar NMR spin-lattice relaxation rate $1/T_1$ of a system exhibiting Brownian dynamics in a discrete and finite configuration space. It is shown that this approach can be particularly useful to model the proton relaxation rate in molecular rotors.
We investigated the behavior of H$_2$, main constituent of the gas phase in dense clouds, after collision with amorphous solid water (ASW) surfaces, one of the most abundant chemical species of interstellar ices. We developed a general framework to study the adsorption dynamics of light species on interstellar ices. We provide binding energies and their distribution, sticking probabilities for incident energies between 1 meV and 60 meV, and thermal sticking coefficients between 10 and 300 K for surface temperatures from 10 to 110 K. We found that the sticking probability depends strongly on the adsorbate kinetic energy and the surface temperature, but hardly on the angle of incidence. We observed finite sticking probabilities above the thermal desorption temperature. Adsorption and thermal desorption should be considered as separate events with separate time scales. Laboratory results for these species have shown a gap in the trends attributed to the differently employed experimental techniques. Our results complement observations and extend them, increasing the range of gas temperatures under consideration. We plan to employ our method to study a variety of adsorbates, including radical and charged species.
Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Grand-Canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work we propose the Constant Chemical Potential Molecular Dynamics (C$mu$MD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C$mu$MD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions, and to extract growth rates and free-energy barriers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا