Do you want to publish a course? Click here

Residual bulk viscosity of a disordered 2D electron gas

73   0   0.0 ( 0 )
 Added by Vladimir Zakharov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nonzero bulk viscosity signals breaking of the scale invariance. We demonstrate that a disorder in two-dimensional noninteracting electron gas in a perpendicular magnetic field results in the nonzero disorder-averaged bulk viscosity. We derive analytic expression for the bulk viscosity within the self-consistent Born approximation. This residual bulk viscosity provides the lower bound for the bulk viscosity of 2D interacting electrons at low enough temperatures.



rate research

Read More

We calculate the spin-Hall conductivity for a two-dimensional electron gas within the self-consistent Born approximation, varying the strength and type of disorder. In the weak disorder limit we find both analytically and numerically a vanishing spin-Hall conductivity even when we allow a momentum dependent scattering. Separating the reactive from the disspative current response, we find the universal value $sigma^R_{sH} = e/8 pi$ for the reactive response, which cancels however with the dissipative part $sigma^D_{sH} = -e/8 pi$.
We develop a theory of magnetooscillations in the photoconductivity of a two-dimensional electron gas observed in recent experiments. The effect is governed by a change of the electron distribution function induced by the microwave radiation. We analyze a nonlinearity with respect to both the dc field and the microwave power, as well as the temperature dependence determined by the inelastic relaxation rate.
Semiconductor interfaces, such as these existing in multilayer structures (e.g., quantum wells (QWs)), are interesting because of their ability to form 2D electron gases (2DEGs), in which charge carriers behave completely differently than they do in the bulk. As an example, in the presence of a strong magnetic field, the Landau quantization of electronic levels in the 2DEG results in the quantum Hall effect (QHE), in which Hall conductance is quantized. This chapter is devoted to the properties of such 2DEGs in multilayer structures made of compound semiconductors belonging to the class of Se- and Te-based chalcogenides. In particular, we will also discuss the interesting question of how the QHE phenomenon is affected by the giant Zeeman splitting characteristic of II-VI-based diluted magnetic semiconductors (DMSs), especially when the Zeeman splitting and Landau splitting become comparable. We will also shortly discuss novel topological phases in chalcogenide multilayers.
The wavefunctions of a disordered two-dimensional electron gas at the quantum-critical Anderson transition are predicted to exhibit multifractal scaling in their real space amplitude. We experimentally investigate the appearance of these characteristics in the spatially resolved local density of states of a two-dimensional mixed surface alloy Bi_xPb_{1-x}/Ag(111), by combining high-resolution scanning tunneling microscopy with spin and angle-resolved inverse-photoemission experiments. Our detailed knowledge of the surface alloy electronic band structure, the exact lattice structure and the atomically resolved local density of states enables us to construct a realistic Anderson tight binding model of the mixed surface alloy, and to directly compare the measured local density of states characteristics with those from our model calculations. The statistical analyses of these two-dimensional local density of states maps reveal their log-normal distributions and multifractal scaling characteristics of the underlying wavefunctions with a finite anomalous scaling exponent. Finally, our experimental results confirm theoretical predictions of an exact scaling symmetry for Anderson quantum phase transitions in the Wigner-Dyson classes.
Donors in silicon can now be positioned with an accuracy of about one lattice constant, making it possible in principle to form donor arrays for quantum computation or quantum simulation applications. However the multi-valley character of the silicon conduction band combines with central cell corrections to the donor state Hamiltonian to translate atomic scale imperfections in donor placement into strongly disordered inter-donor hybridization. We present a simple model that is able to account accurately for central-cell corrections, and use it to assess the impact of donor-placement disorder on donor array properties in both itinerant and localized limits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا