Do you want to publish a course? Click here

An Evaluation of Edge TPU Accelerators for Convolutional Neural Networks

74   0   0.0 ( 0 )
 Added by Amir Yazdanbakhsh
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Edge TPUs are a domain of accelerators for low-power, edge devices and are widely used in various Google products such as Coral and Pixel devices. In this paper, we first discuss the major microarchitectural details of Edge TPUs. Then, we extensively evaluate three classes of Edge TPUs, covering different computing ecosystems, that are either currently deployed in Google products or are the product pipeline, across 423K unique convolutional neural networks. Building upon this extensive study, we discuss critical and interpretable microarchitectural insights about the studied classes of Edge TPUs. Mainly, we discuss how Edge TPU accelerators perform across convolutional neural networks with different structures. Finally, we present our ongoing efforts in developing high-accuracy learned machine learning models to estimate the major performance metrics of accelerators such as latency and energy consumption. These learned models enable significantly faster (in the order of milliseconds) evaluations of accelerators as an alternative to time-consuming cycle-accurate simulators and establish an exciting opportunity for rapid hard-ware/software co-design.

rate research

Read More

176 - Hang Lu , Xin Wei , Ning Lin 2018
Inference efficiency is the predominant consideration in designing deep learning accelerators. Previous work mainly focuses on skipping zero values to deal with remarkable ineffectual computation, while zero bits in non-zero values, as another major source of ineffectual computation, is often ignored. The reason lies on the difficulty of extracting essential bits during operating multiply-and-accumulate (MAC) in the processing element. Based on the fact that zero bits occupy as high as 68.9% fraction in the overall weights of modern deep convolutional neural network models, this paper firstly proposes a weight kneading technique that could eliminate ineffectual computation caused by either zero value weights or zero bits in non-zero weights, simultaneously. Besides, a split-and-accumulate (SAC) computing pattern in replacement of conventional MAC, as well as the corresponding hardware accelerator design called Tetris are proposed to support weight kneading at the hardware level. Experimental results prove that Tetris could speed up inference up to 1.50x, and improve power efficiency up to 5.33x compared with the state-of-the-art baselines.
Neural architectures and hardware accelerators have been two driving forces for the progress in deep learning. Previous works typically attempt to optimize hardware given a fixed model architecture or model architecture given fixed hardware. And the dominant hardware architecture explored in this prior work is FPGAs. In our work, we target the optimization of hardware and software configurations on an industry-standard edge accelerator. We systematically study the importance and strategies of co-designing neural architectures and hardware accelerators. We make three observations: 1) the software search space has to be customized to fully leverage the targeted hardware architecture, 2) the search for the model architecture and hardware architecture should be done jointly to achieve the best of both worlds, and 3) different use cases lead to very different search outcomes. Our experiments show that the joint search method consistently outperforms previous platform-aware neural architecture search, manually crafted models, and the state-of-the-art EfficientNet on all latency targets by around 1% on ImageNet top-1 accuracy. Our method can reduce energy consumption of an edge accelerator by up to 2x under the same accuracy constraint, when co-adapting the model architecture and hardware accelerator configurations.
For most deep learning practitioners, sequence modeling is synonymous with recurrent networks. Yet recent results indicate that convolutional architectures can outperform recurrent networks on tasks such as audio synthesis and machine translation. Given a new sequence modeling task or dataset, which architecture should one use? We conduct a systematic evaluation of generic convolutional and recurrent architectures for sequence modeling. The models are evaluated across a broad range of standard tasks that are commonly used to benchmark recurrent networks. Our results indicate that a simple convolutional architecture outperforms canonical recurrent networks such as LSTMs across a diverse range of tasks and datasets, while demonstrating longer effective memory. We conclude that the common association between sequence modeling and recurrent networks should be reconsidered, and convolutional networks should be regarded as a natural starting point for sequence modeling tasks. To assist related work, we have made code available at http://github.com/locuslab/TCN .
With the general trend of increasing Convolutional Neural Network (CNN) model sizes, model compression and acceleration techniques have become critical for the deployment of these models on edge devices. In this paper, we provide a comprehensive survey on Pruning, a major compression strategy that removes non-critical or redundant neurons from a CNN model. The survey covers the overarching motivation for pruning, different strategies and criteria, their advantages and drawbacks, along with a compilation of major pruning techniques. We conclude the survey with a discussion on alternatives to pruning and current challenges for the model compression community.
Training Convolutional Neural Networks (CNNs) usually requires a large number of computational resources. In this paper, textit{SparseTrain} is proposed to accelerate CNN training by fully exploiting the sparsity. It mainly involves three levels of innovations: activation gradients pruning algorithm, sparse training dataflow, and accelerator architecture. By applying a stochastic pruning algorithm on each layer, the sparsity of back-propagation gradients can be increased dramatically without degrading training accuracy and convergence rate. Moreover, to utilize both textit{natural sparsity} (resulted from ReLU or Pooling layers) and textit{artificial sparsity} (brought by pruning algorithm), a sparse-aware architecture is proposed for training acceleration. This architecture supports forward and back-propagation of CNN by adopting 1-Dimensional convolution dataflow. We have built %a simple compiler to map CNNs topology onto textit{SparseTrain}, and a cycle-accurate architecture simulator to evaluate the performance and efficiency based on the synthesized design with $14nm$ FinFET technologies. Evaluation results on AlexNet/ResNet show that textit{SparseTrain} could achieve about $2.7 times$ speedup and $2.2 times$ energy efficiency improvement on average compared with the original training process.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا