Soliton-mode proliferation induced by cross-phase modulation of harmonic waves by a dark-soliton crystal in optical media


Abstract in English

The generation of high-intensity optical fields from harmonic-wave photons, interacting via a cross-phase modulation with dark solitons both propagating in a Kerr nonlinear medium, is examined. The focus is on a pump consisting of time-entangled dark-soliton patterns, forming a periodic waveguide along the path of the harmonic-wave probe. It is shown that an increase of the strength of cross-phase modulation respective to the self-phase modulation, favors soliton-mode proliferation in the bound-state spectrum of the trapped harmonic-wave probe. The induced soliton modes, which display the structures of periodic soliton lattices, are not just rich in numbers, they also form a great diversity of population of soliton crystals with a high degree of degeneracy.

Download