No Arabic abstract
Fifth Generation (5G) New Radio (NR) does not support data transmission during random access (RA) procedures, which results in unnecessary control signalling overhead and power consumption, especially for small data transmission (SDT). Motivated by this, 3GPP has proposed 4/2-step SDT RA schemes based on the existing grant-based (4-step) and grant-free (2-step) RA schemes, with the aim to enable data transmission during RA procedures in Radio Resource Control (RRC) Inactive state. To compare the 4/2-step SDT RA schemes with the benchmark 4/2-step RA schemes, we provide a spatio-temporal analytical framework to evaluate the RA schemes, which jointly models the preamble detection, Physical Uplink Shared Channel (PUSCH) decoding, and data transmission procedures. Based on this analytical model, we derive the analytical expressions for the overall packet transmission success probability and average throughput in each RACH attempt. We also derive the average energy consumption in each RACH attempt. Our results show that 2-step SDT RA scheme provides the highest overall packet transmission success probability, and the lowest average energy consumption, but the performance gain decreases with the increase of device intensity.
5G New Radio (NR) is expected to support new ultra-reliable low-latency communication (URLLC) service targeting at supporting the small packets transmissions with very stringent latency and reliability requirements. Current Long Term Evolution (LTE) system has been designed based on grantbased (GB) (i.e., dynamic grant) random access, which can hardly support the URLLC requirements. Grant-free (GF) (i.e., configured grant) access is proposed as a feasible and promising technology to meet such requirements, especially for uplink transmissions, which effectively saves the time of requesting/waiting for a grant. While some basic GF access features have been proposed and standardized in NR Release-15, there is still much space to improve. Being proposed as 3GPP study items, three GF access schemes with Hybrid Automatic Repeat reQuest (HARQ) retransmissions including Reactive, K-repetition, and Proactive, are analyzed in this paper. Specifically, we present a spatiotemporal analytical framework for the contention-based GF access analysis. Based on this framework, we define the latent access failure probability to characterize URLLC reliability and latency performances. We propose a tractable approach to derive and analyze the latent access failure probability of the typical UE under three GF HARQ schemes. Our results show that under shorter latency constraints, the Proactive scheme provides the lowest latent access failure probability, whereas, under longer latency constraints, the K-repetition scheme achieves the lowest latent access failure probability, which depends on K. If K is overestimated, the Proactive scheme provides lower latent access failure probability than the K-repetition scheme.
This paper designs a cooperative activity detection framework for massive grant-free random access in the sixth-generation (6G) cell-free wireless networks based on the covariance of the received signals at the access points (APs). In particular, multiple APs cooperatively detect the device activity by only exchanging the low-dimensional intermediate local information with their neighbors. The cooperative activity detection problem is non-smooth and the unknown variables are coupled with each other for which conventional approaches are inapplicable. Therefore, this paper proposes a covariance-based algorithm by exploiting the sparsity-promoting and similarity-promoting terms of the device state vectors among neighboring APs. An approximate splitting approach is proposed based on the proximal gradient method for solving the formulated problem. Simulation results show that the proposed algorithm is efficient for large-scale activity detection problems while requires shorter pilot sequences compared with the state-of-art algorithms in achieving the same system performance.
Grant-free sparse code multiple access (GF-SCMA) is considered to be a promising multiple access candidate for future wireless networks. In this paper, we focus on characterizing the performance of uplink GF-SCMA schemes in a network with ubiquitous connections, such as the Internet of Things (IoT) networks. To provide a tractable approach to evaluate the performance of GF-SCMA, we first develop a theoretical model taking into account the property of multi-user detection (MUD) in the SCMA system. We then analyze the error rate performance of GF-SCMA in the case of codebook collision to investigate the reliability of GF-SCMA when reusing codebook in massive IoT networks. For performance evaluation, accurate approximations for both success probability and average symbol error probability (ASEP) are derived. To elaborate further, we utilize the analytical results to discuss the impact of codeword sparse degree in GFSCMA. After that, we conduct a comparative study between SCMA and its variant, dense code multiple access (DCMA), with GF transmission to offer insights into the effectiveness of these two schemes. This facilitates the GF-SCMA system design in practical implementation. Simulation results show that denser codebooks can help to support more UEs and increase the reliability of data transmission in a GF-SCMA network. Moreover, a higher success probability can be achieved by GFSCMA with denser UE deployment at low detection thresholds since SCMA can achieve overloading gain.
In this paper we propose a novel millimeter wave (mmW) multiple access method that exploits unique frequency dependent beamforming capabilities of True Time Delay (TTD) array architecture. The proposed protocol combines a contentionbased grant-free access and orthogonal frequency-division multiple access (OFDMA) scheme for uplink machine type communications. By exploiting abundant time-frequency resource blocks in mmW spectrum, we design a simple protocol that can achieve low collision rate and high network reliability for short packets and sporadic transmissions. We analyze the impact of various system parameters on system performance during synchronization and contention period. We exploit unique advantages of frequency dependent beamforming, referred as rainbow beam, to eliminate beam training overhead and analyze its impact on rates, latency, and coverage. The proposed system and protocol can flexibly accommodate different low latency applications with moderate rate requirements for a very large number of narrowband single antenna devices. By harnessing abundant resources in mmW spectrum and beamforming gain of TTD arrays rainbow link based system can simultaneously satisfy ultra-reliability and massive multiple access requirements.
In the massive machine-type communication (mMTC) scenario, a large number of devices with sporadic traffic need to access the network on limited radio resources. While grant-free random access has emerged as a promising mechanism for massive access, its potential has not been fully unleashed. In particular, the common sparsity pattern in the received pilot and data signal has been ignored in most existing studies, and auxiliary information of channel decoding has not been utilized for user activity detection. This paper endeavors to develop advanced receivers in a holistic manner for joint activity detection, channel estimation, and data decoding. In particular, a turbo receiver based on the bilinear generalized approximate message passing (BiG-AMP) algorithm is developed. In this receiver, all the received symbols will be utilized to jointly estimate the channel state, user activity, and soft data symbols, which effectively exploits the common sparsity pattern. Meanwhile, the extrinsic information from the channel decoder will assist the joint channel estimation and data detection. To reduce the complexity, a low-cost side information-aided receiver is also proposed, where the channel decoder provides side information to update the estimates on whether a user is active or not. Simulation results show that the turbo receiver is able to reduce the activity detection, channel estimation, and data decoding errors effectively, while the side information-aided receiver notably outperforms the conventional method with a relatively low complexity.