Do you want to publish a course? Click here

Paraproducts for bilinear multipliers associated with convex sets

75   0   0.0 ( 0 )
 Added by Olli Saari
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We prove bounds in the local $ L^2 $ range for exotic paraproducts motivated by bilinear multipliers associated with convex sets. One result assumes an exponential boundary curve. Another one assumes a higher order lacunarity condition.



rate research

Read More

172 - Xiaochun Li , Lechao Xiao 2013
We study the bilinear Hilbert transform and bilinear maximal functions associated to polynomial curves and obtain uniform $L^r$ estimates for $r>frac{d-1}{d}$ and this index is sharp up to the end point.
103 - Junfeng Li , Haixia Yu 2020
In this paper, we determine the $L^p(mathbb{R})times L^q(mathbb{R})rightarrow L^r(mathbb{R})$ boundedness of the bilinear Hilbert transform $H_{gamma}(f,g)$ along a convex curve $gamma$ $$H_{gamma}(f,g)(x):=mathrm{p.,v.}int_{-infty}^{infty}f(x-t)g(x-gamma(t)) ,frac{textrm{d}t}{t},$$ where $p$, $q$, and $r$ satisfy $frac{1}{p}+frac{1}{q}=frac{1}{r}$, and $r>frac{1}{2}$, $p>1$, and $q>1$. Moreover, the same $L^p(mathbb{R})times L^q(mathbb{R})rightarrow L^r(mathbb{R})$ boundedness property holds for the corresponding (sub)bilinear maximal function $M_{gamma}(f,g)$ along a convex curve $gamma$ $$M_{gamma}(f,g)(x):=sup_{varepsilon>0}frac{1}{2varepsilon}int_{-varepsilon}^{varepsilon}|f(x-t)g(x-gamma(t))| ,textrm{d}t.$$
149 - Xiaochun Li 2008
We establish $L^ptimes L^q$ to $L^r$ estimates for some paraproducts, which arise in the study of the bilinear Hilbert transform along curves.
When is the composition of paraproducts bounded? This is an important, and difficult question, related to to a question of Sarason on composition of Hankel matrices, and the two-weight problem for the Hilbert transform. We consider randomized variants of this question, finding non-classical characterizations, for dyadic paraproducts.
In this paper, we study forms of the uncertainty principle suggested by problems in control theory. First, we prove an analogue of the Paneah-Logvinenko-Sereda Theorem characterizing sets which satisfy the Geometric Control Condition (GCC). This result is applied to get a uniqueness result for functions with spectrum supported on sufficiently flat sets. One corollary is that a function with spectrum in an annulus of a given thickness can be bounded, in $L^2$-norm, from above by its restriction to any open GCC set, independent of the radius of the annulus. This result is applied to the energy decay rates for damped fractional wave equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا