Linear Classifiers in Product Space Forms


Abstract in English

Embedding methods for product spaces are powerful techniques for low-distortion and low-dimensional representation of complex data structures. Nevertheless, little is known regarding downstream learning and optimization problems in such spaces. Here, we address the problem of linear classification in a product space form -- a mix of Euclidean, spherical, and hyperbolic spaces. First, we describe new formulations for linear classifiers on a Riemannian manifold using geodesics and Riemannian metrics which generalize straight lines and inner products in vector spaces, respectively. Second, we prove that linear classifiers in $d$-dimensional space forms of any curvature have the same expressive power, i.e., they can shatter exactly $d+1$ points. Third, we formalize linear classifiers in product space forms, describe the first corresponding perceptron and SVM classification algorithms, and establish rigorous convergence results for the former. We support our theoretical findings with simulation results on several datasets, including synthetic data, CIFAR-100, MNIST, Omniglot, and single-cell RNA sequencing data. The results show that learning methods applied to small-dimensional embeddings in product space forms outperform their algorithmic counterparts in each space form.

Download