Do you want to publish a course? Click here

Marginal energy intensity of water supply

61   0   0.0 ( 0 )
 Added by Yang Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reducing global carbon emissions will require diverse industrial sectors to use energy more efficiently, electrify, and operate intermittently. The water sector is a transformation target, but we lack energy quantification tools to guide operational, infrastructure, and policy interventions in complex water sourcing, treatment, and distribution networks. The marginal energy intensity (MEI) of water supply quantifies the location-specific, instantaneous embedded energy in water delivered to consumers. We describe the first MEI algorithm and elucidate the sensitivity of MEI to generalizable water system features. When incorporated in multi-objective operational and planning models, MEI will dramatically increase the energy co-benefits of water efficiency, conservation, and retrofit programs; maximize energy flexibility services that water systems can deliver to the grid; and facilitate full cost recovery in distribution system operation.



rate research

Read More

We formulate and solve a regression problem with time-stamped distributional data. Distributions are considered as points in the Wasserstein space of probability measures, metrized by the 2-Wasserstein metric, and may represent images, power spectra, point clouds of particles, and so on. The regression seeks a curve in the Wasserstein space that passes closest to the dataset. Our regression problem allows utilizing general curves in a Euclidean setting (linear, quadratic, sinusoidal, and so on), lifted to corresponding measure-valued curves in the Wasserstein space. It can be cast as a multi-marginal optimal transport problem that allows efficient computation. Illustrative academic examples are presented.
Energy and water systems are highly interconnected. Energy is required to extract, transmit, and treat water and wastewater, and water is needed for cooling energy systems. There is a rapid increase in demand for energy and water due to factors such as population and economic growth. In less than 30 years, the need for energy and water will nearly double globally. As the energy and water resources are limited, it is critical to have a sustainable energy-water nexus framework to meet these growing demands. Renewable energies provide substantial opportunities in energy-water nexuses by boosting energy and water reliability and sustainability and can be less water-intensive than conventional technologies. These resources, such as wind and solar power, do not need water inputs. As a result, they can be used as a supplement to the energy-water nexus portfolio. In this paper, renewable energies in energy-water nexus have been investigated for a range of possible scenarios. As renewable energy resources are not deterministic, fuzzy logic is used to model the uncertainty. The results show that renewable energies can significantly improve the energy-water nexus planning; however, the power grid reliability on renewable energy should be aligned with the level of systems uncertainty. The gap between the decisions extracted from the Fuzzy model and the deterministic model amplifies the importance of considering uncertainty to generate reliable decisions. Keywords: Energy-water Nexus, Renewable Energies, Optimization under Uncertainty, Fuzzy Logic.
An important issue in todays electricity markets is the management of flexibilities offered by new practices, such as smart home appliances or electric vehicles. By inducing changes in the behavior of residential electric utilities, demand response (DR) seeks to adjust the demand of power to the supply for increased grid stability and better integration of renewable energies. A key role in DR is played by emergent independent entities called load aggregators (LAs). We develop a new decentralized algorithm to solve a convex relaxation of the classical Alternative Current Optimal Power Flow (ACOPF) problem, which relies on local information only. Each computational step can be performed in an entirely privacy-preserving manner, and system-wide coordination is achieved via node-specific distribution locational marginal prices (DLMPs). We demonstrate the efficiency of our approach on a 15-bus radial distribution network.
A system of a systems approach that analyzes energy and water systems simultaneously is called energy-water nexus. Neglecting the interrelationship between energy and water drives vulnerabilities whereby limits on one resource can cause constraints on the other resource. Power plant energy production directly depends on water availability, and an outage of the power systems will affect the wastewater treatment facility processes. Therefore, it is essential to integrate energy and water planning models. As mathematical energy-water nexus problems are complex, involve many uncertain parameters, and are large-scale, we proposed a novel multi-stage adjustable Fuzzy robust approach that balances the solutions robustness against the budget-constraints. Scenario-based analysis indicates that the proposed approach generates flexible and robust decisions that avoid excessive costs compared to conservative methods. Keywords: Energy-water Nexus, Renewable Energy, Optimization under Uncertainty, Fuzzy logic, Robust Optimization
In this paper, a method to evaluate the flexibility of aggregates of domestic electric water heaters is proposed and applied to the Italian case. Flexibility is defined as the capability of the aggregate to vary its power demand for a given time interval. The evaluation method consists of a Monte Carlo analysis, that uses the thermal model of electric water heaters and a proper elaboration of the external inputs, such as ambient and cold water temperatures, and hot water demand. The case of large aggregates defined along the Italian territory has been studied showing the dependence of flexibility on seasons and on time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا