Do you want to publish a course? Click here

HO Puppis: Not a Be Star but a Newly Confirmed IW And-Type Star

52   0   0.0 ( 0 )
 Added by Chow-Choong Ngeow
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

HO Puppis (HO Pup) was considered as a Be-star candidate based on its gamma-Cassiopeiae-type light curve, but lacked spectroscopic confirmation. Using distance measured from Gaia Data Release 2 and the spectral-energy-distribution (SED) fit on broadband photometry, the Be-star nature of HO Pup is ruled out. Furthermore, based on the 28,700 photometric data points collected from various time-domain surveys and dedicated intensive-monitoring observations, the light curves of HO Pup closely resemble IW And-type stars (as pointed out in Kimura et al. 2020a), exhibiting characteristics such as quasi-standstill phase, brightening, and dips. The light curve of HO Pup displays various variability timescales, including brightening cycles ranging from 23 to 61 days, variations with periods between 3.9 days and 50 minutes during the quasi-standstill phase, and a semi-regular ~14-day period for the dip events. We have also collected time-series spectra (with various spectral resolutions), in which Balmer emission lines and other expected spectral lines for an IW And-type star were detected (even though some of these lines were also expected to be present for Be stars). We detect Bowen fluorescence near the brightening phase, and that can be used to discriminate between IW And-type stars and Be stars. Finally, despite only observing for four nights, the polarization variation was detected, indicating that HO Pup has significant intrinsic polarization.



rate research

Read More

We present time-resolved CCD photometry of a dwarf nova NSV 4838 (UMa 8, SDSS J102320.27+440509.8) during the 2005 June and 2007 February outburst. Both light curves showed superhumps with a mean period of 0.0699(1) days for the 2005 outburst and 0.069824(83) days for the 2007 outburst, respectively. Using its known orbital period of 0.0678 days, we estimated the mass ratio of the system to be $q$=0.13 based on an empirical relation. Although the majority of SU UMa-type dwarf novae having similar superhump periods show negative period derivatives, we found that the superhump period increased at $dot{P}$ / $P_{rm sh}$=+7(+3, -4)$times10^{-5}$ during the 2007 superoutburst. We also investigated long-term light curves of NSV 4838, from which we derived 340 days as a supercycle of this system.
155 - F. Lykou , D. Klotz , C. Paladini 2015
The circumstellar environment of L2 Pup, an oxygen-rich semiregular variable, was observed to understand the evolution of mass loss and the shaping of ejecta in the late stages of stellar evolution. High-angular resolution observations from a single 8 m telescope were obtained using aperture masking in the near-infrared (1.64, 2.30 and 3.74 $rmmu m$) on the NACO/VLT, both in imaging and polarimetric modes. The aperture-masking images of L2 Pup at 2.30 $rmmu m$ show a resolved structure that resembles a toroidal structure with a major axis of ~140 milliarcseconds (mas) and an east-west orientation. Two clumps can be seen on either side of the star, ~65 mas from the star, beyond the edge of the circumstellar envelope (estimated diameter is ~27 mas), while a faint, hook-like structure appear toward the northeast. The patterns are visible both in the imaging and polarimetric mode, although the latter was only used to measure the total intensity (Stokes I). The overall shape of the structure is similar at the 3.74 $rmmu m$ pseudo-continuum (dust emission), where the clumps appear to be embedded within a dark, dusty lane. The faint, hook-like patterns are also seen at this wavelength, extending northeast and southwest with the central, dark lane being an apparent axis of symmetry. We interpret the structure as a circumstellar torus with inner radius of 4.2 au. With a rotation velocity of 10 km s$^{-1}$ as suggested by the SiO maser profile, we estimate a stellar mass of 0.7 M$_odot$.}
215 - V. Andreoli 2020
LAMOST J202629.80+423652.0 has been recently classified as a new symbiotic star containing a long-period Mira, surrounded by dust (D-type) and displaying in the optical spectra high ionization emission lines, including the Raman-scattered OVI at 6825 Ang. We have observed LAMOST J202629.80+423652.0 photometrically in the BVRI bands and spectroscopically over the 3500-8000 Ang range. We have found it to be a normal G8IV sub-giant star, deprived of any emission line in its spectrum, and reddened by E(B-V)=0.35 mag. Combining our photometry with data from all-sky patrol surveys, we find LAMOST J202629.80+423652.0 to be non variable, so not pulsating as a Mira. We have compiled from existing sources its spectral energy distribution, extending well into the mid-Infrared, and found it completely dominated by the G8IV photospheric stellar emission, without any sign of circumstellar dust. We therefore conclude that LAMOST J202629.80+423652.0 is not a symbiotic star, nor it is pulsating or been enshrouded in dust.
Wolf 1465 has been suggested as a candidate for a bright dwarf carbon star. It is not.
115 - S. Vennes , P. Nemeth , A. Kawka 2017
Subluminous Type Ia supernovae, such as the Type Iax class prototype SN 2002cx, are described by a variety of models such as the failed detonation and partial deflagration of an accreting carbon-oxygen white dwarf star, or the explosion of an accreting, hybrid carbon-oxygen-neon core. These models predict that bound remnants survive such events with, according to some simulations, a high kick velocity. We report the discovery of a high proper motion, low-mass white dwarf (LP 40-365) that travels at a velocity greater than the Galactic escape velocity and whose peculiar atmosphere is dominated by intermediate-mass elements. Strong evidence indicates that this partially burnt remnant was ejected following a subluminous Type Ia supernova event. This supports the viability of single-degenerate supernova progenitors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا