Do you want to publish a course? Click here

Ideal fully spin-polarized type-II nodal line state in half-metals X2YZ4 (X=K, Cs, Rb, Y=Cr, Cu, Z=Cl, F)

114   0   0.0 ( 0 )
 Added by Xiaoming Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lorentz-violating type-II nodal lines exhibit attracting physical properties and have been hot discussed currently. However, their investigations have been mostly limited in nonmagnetic system because of lacking ideal spin-polarized candidates with clean type-II nodal line states. Here, for the first time, we report the family of X2YZ4 (X=K, Cs, Rb, Y=Cr, Cu, Z=Cl, F) compounds are such ideal candidate materials by using the member of K2CuF4 as an example. We show the material is a ferromagnetic half-metal with weak anisotropy, which host fully spin-polarized conducting electrons. In the conducting spin channel, the band crossing form a pair of type-II nodal lines, protected by mirror symmetry. These type-II nodal lines are different with former proposed examples because they have a 100% spin polarization. In addition, we also show the material can realize switchable topological states, which can be easily controlled by external magnetic field. It is noticed that, the material: i) is stable and can be synthesized in experiments; ii) has clear magnetic structure; and iii) manifests clean type-II nodal line state and clear drumhead surface states. Therefore, the proposed X2YZ4 compounds are expected to be an excellent platform to investigate the novel physical properties of both type-II nodal line states with complete



rate research

Read More

Double-Weyl fermions, as novel topological states of matter, have been mostly discussed in nonmagnetic materials. Here, based on density-functional theory and symmetry analysis, we propose the realization of fully spin-polarized double-Weyl fermions in a family ferromagnetic materials X2RhF6 (X= K, Rb, Cs). These materials have the half-metal ground states, where only the bands from the spin-down channel present near the Fermi energy. The spin-down bands form a pair of triply degenerate nodal points (TDNPs) if spin-orbit coupling (SOC) is not included. Under SOC, one TDNP splits into two double-Weyl points featuring quadratic dispersion along two momentum direction, and they are protected by the three-fold rotation (C3) symmetry. Unlike most double-Weyl semimetals, the Weyl points proposed here have the type-III dispersion with one of the crossing bands being saddle-shaped. An effective model is constructed, which describes well the nature of the Weyl points. These Weyl points are fully spin-polarized, and are characterized with double Fermi arcs on the surface spectrum. Breaking C3 symmetry by lattice strain could shift one double-Weyl point into a pair of type-II single-Weyl points. The X2RhF6 materials proposed here are excellent candidates to investigate the novel properties of type-III double-Weyl fermions in ferromagnetic system, as well as generate potential applications in spintronics.
Nodal-chain fermions, as novel topological states of matter, have been hotly discussed in non-magnetic materials. Here, by using first-principles calculations and symmetry analysis, we propose the realization of fully spin-polarized nodal chain in the half-metal state of LiV$_2$O$_4$ compound. The material naturally shows a ferromagnetic ground state, and takes on a half-metal band structure with only the bands from the spin-up channel present near the Fermi level. The spin-up bands cross with each other, which form two types of nodal loops. These nodal loops arise from band inversion and are under the protection of the glide mirror symmetries. Remarkably, we find the nodal loops conjunct with each other and form chain-like nodal structure. Correspondingly, the w-shaped surface states are also fully spin-polarized. The fully spin-polarized nodal chain identified here has not been proposed in realistic materials before. An effective model is constructed to describe the nature of nodal chain. The effects of the electron correlation, the lattice strains, and the spin-orbit coupling are discussed. The fully spin-polarized bulk nodal-chain and the associated nontrivial surface states for a half-metal may open novel applications in spintronics.
Nodal line semimetals (NLSs) have attracted broad interest in current research. In most of existing NLSs, the intrinsic properties of nodal lines are greatly destroyed because nodal lines usually suffer sizable gaps induced by non-negligible spin-orbit coupling (SOC). In this work,we propose the topological nodal line electrides (TNLEs), which achieve electronic structures of nodal lines and electrides simultaneously, provide new insight on designing excellent NLSs nearly immune from SOC. Since the states near the Fermi level are most contributed by nonnucleus-bounded interstitial electrons, nodal lines in TNLEs manifest extremely small SOCinduced gap even possessing heavy elements. Especially, we propose the family of A2B (A = Ca, Sr, Ba; B= As, Sb, Bi) materials are realistic TNLEs with negligible SOC-induced gaps, which can play as excellent platforms to study the intrinsic properties of TNLEs
Topological semimetals in ferromagnetic materials have attracted enormous attention due to the potential applications in spintronics. Using the first-principles density functional theory together with an effective lattice model, here we present a new family of topological semimetals with a fully spin-polarized nodal loop in alkaline-metal monochalcogenide $MX$ ($M$ = Li, Na, K, Rb, Cs; $X$ = S, Se, Te) monolayers. The half-metallic ferromagnetism can be established in $MX$ monolayers, in which one nodal loop formed by two crossing bands with the same spin components is found at the Fermi energy. This nodal loop half-metal survives even when considering the spin-orbit coupling owing to the symmetry protection provided by the $mathcal{M}_{z}$ mirror plane. The quantum anomalous Hall state and Weyl-like semimetal in this system can be also achieved by rotating the spin from the out-of-plane to the in-plane direction. The $MX$ monolayers hosting rich topological phases thus offer an excellent materials platform for realizing the advanced spintronics concepts.
Nodal-line semimetals (NLSs) represent a new type of topological semimetallic beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The conventional NLS phase, in which the two bands forming the nodal line have opposite signs for their slopes along any direction perpendicular to the nodal line, has been proposed and realized in many compounds, whereas the exotic type-II NLS is very rare. Our first-principles calculations show that Mg$_3$Bi$_2$ is a material candidate that hosts a single type-II nodal loop around $Gamma$. The band crossing is close to the Fermi level and the two crossing bands have the same sign in their slopes along the radial direction of the loop, indicating the type-II nature of the nodal line. Spin-orbit coupling generates only a small energy gap ($sim$35 meV) at the nodal points and does not negate the band dispersion of Mg$_3$Bi$_2$ that yields the type-II nodal line. Based on this prediction we have synthesized Mg$_3$Bi$_2$ single crystals and confirmed the presence of the type-II nodal lines in the material. Our angle-resolved photoemission spectroscopy (ARPES) measurements agree well with our first-principles results and thus establish Mg$_3$Bi$_2$ as an ideal materials platform for studying the exotic properties of type-II nodal line semimetals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا