No Arabic abstract
Literate computing has emerged as an important tool for computational studies and open science, with growing folklore of best practices. In this work, we report two case studies - one in computational magnetism and another in computational mathematics - where domain-specific software was exposed to the Jupyter environment. This enables high-level control of simulations and computation, interactive exploration of computational results, batch processing on HPC resources, and reproducible workflow documentation in Jupyter notebooks. In the first study, Ubermag drives existing computational micromagnetics software through a domain-specific language embedded in Python. In the second study, a dedicated Jupyter kernel interfaces with the GAP system for computational discrete algebra and its dedicated programming language. In light of these case studies, we discuss the benefits of this approach, including progress toward more reproducible and reusable research results and outputs, notably through the use of infrastructure such as JupyterHub and Binder.
Reproducibility of computational studies is a hallmark of scientific methodology. It enables researchers to build with confidence on the methods and findings of others, reuse and extend computational pipelines, and thereby drive scientific progress. Since many experimental studies rely on computational analyses, biologists need guidance on how to set up and document reproducible data analyses or simulations. In this paper, we address several questions about reproducibility. For example, what are the technical and non-technical barriers to reproducible computational studies? What opportunities and challenges do computational notebooks offer to overcome some of these barriers? What tools are available and how can they be used effectively? We have developed a set of rules to serve as a guide to scientists with a specific focus on computational notebook systems, such as Jupyter Notebooks, which have become a tool of choice for many applications. Notebooks combine detailed workflows with narrative text and visualization of results. Combined with software repositories and open source licensing, notebooks are powerful tools for transparent, collaborative, reproducible, and reusable data analyses.
High-order optimization methods, including Newtons method and its variants as well as alternating minimization methods, dominate the optimization algorithms for tensor decompositions and tensor networks. These tensor methods are used for data analysis and simulation of quantum systems. In this work, we introduce AutoHOOT, the first automatic differentiation (AD) framework targeting at high-order optimization for tensor computations. AutoHOOT takes input tensor computation expressions and generates optimized derivative expressions. In particular, AutoHOOT contains a new explicit Jacobian / Hessian expression generation kernel whose outputs maintain the input tensors granularity and are easy to optimize. The expressions are then optimized by both the traditional compiler optimization techniques and specific tensor algebra transformations. Experimental results show that AutoHOOT achieves competitive CPU and GPU performance for both tensor decomposition and tensor network applications compared to existing AD software and other tensor computation libraries with manually written kernels. The tensor methods generated by AutoHOOT are also well-parallelizable, and we demonstrate good scalability on a distributed memory supercomputer.
SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. In the last years we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems can be defined by means of a matrix-valued function that depends nonlinearly on a single scalar parameter. We do not consider the particular case of polynomial eigenvalue problems (which are implemented in a different module in SLEPc) and focus here on rational eigenvalue problems and other general nonlinear eigenproblems involving square roots or any other nonlinear function. The paper discusses how the NEP module has been designed to fit the needs of applications and provides a description of the available solvers, including some implementation details such as parallelization. Several test problems coming from real applications are used to evaluate the performance and reliability of the solvers.
The `equation-free toolbox empowers the computer-assisted analysis of complex, multiscale systems. Its aim is to enable you to immediately use microscopic simulators to perform macro-scale system level tasks and analysis, because micro-scale simulations are often the best available description of a system. The methodology bypasses the derivation of macroscopic evolution equations by computing the micro-scale simulator only over short bursts in time on small patches in space, with bursts and patches well-separated in time and space respectively. We introduce the suite of coded equation-free functions in an accessible way, link to more detailed descriptions, discuss their mathematical support, and introduce a novel and efficient algorithm for Projective Integration. Some facets of toolbox development of equation-free functions are then detailed. Download the toolbox functions (https://github.com/uoa1184615/EquationFreeGit) and use to empower efficient and accurate simulation in a wide range of your science and engineering problems.
We present cudaclaw, a CUDA-based high performance data-parallel framework for the solution of multidimensional hyperbolic partial differential equation (PDE) systems, equations describing wave motion. cudaclaw allows computational scientists to solve such systems on GPUs without being burdened by the need to write CUDA code, worry about thread and block details, data layout, and data movement between the different levels of the memory hierarchy. The user defines the set of PDEs to be solved via a CUDA- independent serial Riemann solver and the framework takes care of orchestrating the computations and data transfers to maximize arithmetic throughput. cudaclaw treats the different spatial dimensions separately to allow suitable block sizes and dimensions to be used in the different directions, and includes a number of optimizations to minimize access to global memory.