Do you want to publish a course? Click here

Ideally, all infinite type surfaces can be triangulated

120   0   0.0 ( 0 )
 Added by Hugo Parlier
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We show that any surface of infinite type admits an ideal triangulation. Furthermore, we show that a set of disjoint arcs can be completed into a triangulation if and only if, as a set, they intersect every simple closed curve a finite number of times.



rate research

Read More

We associate to triangulations of infinite type surface a type of flip graph where simultaneous flips are allowed. Our main focus is on understanding exactly when two triangulations can be related by a sequence of flips. A consequence of our results is that flip graphs for infinite type surfaces have uncountably many connected components.
For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, we construct a geometric realization in terms of suitable decorated Teichmueller space of the surface. On the geometric side, this requires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths. Our model allows for an arbitrary choice of coefficients which translates into a choice of a family of integral laminations on the surface. It provides an intrinsic interpretation of cluster variables as renormalized lambda lengths of arcs on the surface. Exchange relations are written in terms of the shear coordinates of the laminations, and are interpreted as generalized Ptolemy relations for lambda lengths. This approach gives alternative proofs for the main structural results from our previous paper, removing unnecessary assumptions on the surface.
The loop graph of an infinite type surface is an infinite diameter hyperbolic graph first studied in detail by Juliette Bavard. An important open problem in the study of infinite type surfaces is to describe the boundary of the loop graph as a space of geodesic laminations. We approach this problem by constructing the first examples of 2-filling rays on infinite type surfaces. Such rays accumulate onto geodesic laminations which are in some sense filling, but without strong enough properties to correspond to points in the boundary of the loop graph. We give multiple constructions using both a hands-on combinatorial approach and an approach using train tracks and automorphisms of flat surfaces. In addition, our approaches are sufficiently robust to describe all 2-filling rays with certain other basic properties as well as to produce uncountably many distinct mapping class group orbits.
For a field $mathbb{F}$, the notion of $mathbb{F}$-tightness of simplicial complexes was introduced by Kuhnel. Kuhnel and Lutz conjectured that any $mathbb{F}$-tight triangulation of a closed manifold is the most economic of all possible triangulations of the manifold. The boundary of a triangle is the only $mathbb{F}$-tight triangulation of a closed 1-manifold. A triangulation of a closed 2-manifold is $mathbb{F}$-tight if and only if it is $mathbb{F}$-orientable and neighbourly. In this paper we prove that a triangulation of a closed 3-manifold is $mathbb{F}$-tight if and only if it is $mathbb{F}$-orientable, neighbourly and stacked. In consequence, the Kuhnel-Lutz conjecture is valid in dimension $leq 3$.
204 - Qiyu Chen , Lixin Liu 2016
Let $X_{0}$ be a complete hyperbolic surface of infinite type with geodesic boundary which admits a countable pair of pants decomposition. As an application of the Basmajian identity for complete bordered hyperbolic surfaces of infinite type with limit sets of 1-dimensional measure zero, we define an asymmetric metric (which is called arc metric) on the quasiconformal Teichmuller space $mathcal{T}(X_{0})$ provided that $X_{0}$ satisfies a geometric condition. Furthermore, we construct several examples of hyperbolic surfaces of infinite type satisfying the geometric condition and discuss the relation between the Shigas condition and the geometric condition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا