Do you want to publish a course? Click here

Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure

100   0   0.0 ( 0 )
 Added by Jinguang Cheng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

CsV3Sb5 is a newly discovered Z2 topological kagome metal showing the coexistence of a charge density wave (CDW)-like order at T* = 94 K and superconductivity (SC) at Tc = 2.5 K at ambient pressure. Here we study the interplay between CDW and SC in CsV3Sb5 via measurements of resistivity and magnetic susceptibility under hydrostatic pressures. We find that the CDW transition decreases with pressure and experience a subtle modification at Pc1 = 0.6-0.9 GPa before it vanishes completely at Pc2 = 2 GPa. Correspondingly, Tc(P) displays an unusual M-shaped double dome character with two maxima around Pc1 and Pc2, respectively, leading to a tripled enhancement of Tc to about 8 K at 2 GPa. The obtained temperature-pressure phase diagram resembles those of many unconventional superconductors, illustrating an intimated competition between CDW-like order and SC. The competition is found to be particularly strong for the intermediate pressure range Pc1 <= P <= Pc2 as evidenced by the broad superconducting transition and reduced superconducting volume fraction. This work not only demonstrates the potential to raise the Tc of the V-based kagome superconductors, but also offers more insights into the rich physics related to the electronic correlations in this novel family of topological kagome metals.

rate research

Read More

245 - C. C. Zhu , X. F. Yang , W. Xia 2021
We present high-pressure electrical transport measurements on the newly discovered V-based superconductors $A$V$_3$Sb$_5$ ($A$ = Rb and K), which have an ideal Kagome lattice of vanadium. Two superconducting domes under pressure are observed in both compounds, as previously observed in their sister compound CsV$_3$Sb$_5$. For RbV$_3$Sb$_5$, the $T_c$ increases from 0.93 K at ambient pressure to the maximum of 4.15 K at 0.38 GPa in the first dome. The second superconducting dome has the highest $T_c$ of 1.57 K at 28.8 GPa. KV$_3$Sb$_5$ displays a similar double-dome phase diagram, however, its two maximum $T_c$s are lower, and the $T_c$ drops faster in the second dome than RbV$_3$Sb$_5$. An integrated temperature-pressure phase diagram of $A$V$_3$Sb$_5$ ($A$ = Cs, Rb and K) is constructed, showing that the ionic radius of the intercalated alkali-metal atoms has a significant effect. Our work demonstrates that double-dome superconductivity under pressure is a common feature of these V-based Kagome metals.
115 - Qi Wang , Pengfei Kong , Wujun Shi 2021
Superconductivity in topological kagome metals has recently received great research interests. Here, charge density wave (CDW) orders and the evolution of superconductivity under various pressures in CsV3Sb5 single crystal with V kagome lattice are investigated. By using high-resolution scanning tunnelling microscopy /spectroscopy (STM/STS), two CDW orders in CsV3Sb5 are observed which correspond to 4a*1a and 2a*2a superlattices. By applying pressure, the superconducting transition temperature Tc is significantly enhanced and reaches a maximum value of 8.2 K at around 1 GPa. Accordingly, CDW state is gradually declined as increasing the pressure, which indicates the competing interplay between CDW and superconducting state in this material. The broad superconducting transitions around 0.4 - 0.8 GPa can be related to the strong competition relation among two CDW states and superconductivity. These results demonstrate that CsV3Sb5 is a new platform for exploring the interplay between superconductivity and CDW in topological kagome metals.
Recent high pressure experiments discovered abnormal double-dome superconductivities in the newly-synthesized kagome materials $A$V$_3$Sb$_5$ ($A$ = K, Rb, Cs), which also host abundant emergent quantum phenomena such as charge density wave (CDW), anomalous Hall effect, nontrivial topological property, etc. In this work, by using first-principles electronic structure calculations, we have studied the CDW state, superconductivity, and topological property in CsV$_3$Sb$_5$ under pressures ($<$ 50 GPa). Based on the electron-phonon coupling theory, our calculated superconducting $T_text{c}$s are consistent with the observed ones in the second superconducting dome at high pressure, but are much higher than the measured values at low pressure. The further calculations including the Hubbard U indicate that with modest electron-electron correlation the magnetism on the V atoms exists at low pressure and diminishes gradually at high pressure. We thus propose that the experimentally observed superconductivity in CsV$_3$Sb$_5$ at ambient/low pressures may still belong to the conventional Bardeen-Cooper-Schrieffer (BCS) type but is partially suppressed by the V magnetism, while the superconductivity under high pressure is fully conventional without invoking the magnetism. We also predict that there are a second weak CDW state and topological phase transitions in CsV$_3$Sb$_5$ under pressures. Our theoretical assertion calls for future experimental examination.
Recently, competing electronic instabilities, including superconductivity and density-wave-like order, have been discovered in vanadium-based kagome metals AV3Sb5 (A = K, Rb, Cs) with a nontrivial band topology. This finding stimulates wide interests to study the interplay of these competing electronic orders and possible exotic excitations in the superconducting state. Here, in order to further clarify the nature of density-wave-like transition in these kagome superconductors, we performed 51V and 133Cs nuclear magnetic resonance (NMR) measurements on the CsV3Sb5 single crystal. A first-order phase transition associated with orbital ordering is revealed by observing a sudden splitting of orbital shift in 51V NMR spectrum at the structural transition temperature Ts ~ 94 K. In contrast, the quadrupole splitting from a charge-density-wave (CDW) order on 51V NMR spectrum only appears gradually below Ts with a typical second-order transition behavior, suggesting that the CDW order is a secondary electronic order. Moreover, combined with 133Cs NMR spectrum, the present result also confirms a three-dimensional structural modulation with a 2ax2ax2c period. Above Ts, the temperature-dependent Knight shift and nuclear spin-lattice relaxation rate (1/T1) further indicate the existence of remarkable magnetic fluctuations from vanadium 3d orbitals, which are suppressed due to orbital ordering below Ts. The present results strongly support that, besides CDW order, the previously claimed density-wave-like transition also involves a dominant orbital order, suggesting a rich orbital physics in these kagome superconductors.
We systematically measure the superconducting (SC) and mixed state properties of high-quality CsV3Sb5 single crystals with Tc ~ 3.5 K. We find that the upper critical field Hc2(T) exhibits a large anisotropic ratio of Hc2^(ab)/Hc2^(c) ~ 9 at zero temperature and fitting its temperature dependence requires a minimum two-band effective model. Moreover, the ratio of the lower critical field, Hc1^(ab)/Hc1^(c), is also found to be larger than 1, which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy. Both Hc1(T) and SC diamagnetic signal are found to change little initially below Tc ~ 3.5 K and then to increase abruptly upon cooling to a characteristic temperature of ~2.8 K. Furthermore, we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state. Interestingly, we find that, below the same characteristic T ~ 2.8 K, the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60o characteristic of the Kagome geometry. Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice, which, at least, is partially driven by electron-electron correlation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا