Do you want to publish a course? Click here

On Adapting Nesterovs Scheme to Accelerate Iterative Methods for Linear Problems

138   0   0.0 ( 0 )
 Added by Tao Hong
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Nesterovs well-known scheme for accelerating gradient descent in convex optimization problems is adapted to accelerating stationary iterative solvers for linear systems. Compared with classical Krylov subspace acceleration methods, the proposed scheme requires more iterations, but it is trivial to implement and retains essentially the same computational cost as the unaccelerated method. An explicit formula for a fixed optimal parameter is derived in the case where the stationary iteration matrix has only real eigenvalues, based only on the smallest and largest eigenvalues. The fixed parameter, and corresponding convergence factor, are shown to maintain their optimality when the iteration matrix also has complex eigenvalues that are contained within an explicitly defined disk in the complex plane. A comparison to Chebyshev acceleration based on the same information of the smallest and largest real eigenvalues (dubbed Restricted Information Chebyshev acceleration) demonstrates that Nesterovs scheme is more robust in the sense that it remains optimal over a larger domain when the iteration matrix does have some complex eigenvalues. Numerical tests validate the efficiency of the proposed scheme. This work generalizes and extends the results of [1, Lemmas 3.1 and 3.2 and Theorem 3.3].



rate research

Read More

The aim of this paper is to investigate the use of an entropic projection method for the iterative regularization of linear ill-posed problems. We derive a closed form solution for the iterates and analyze their convergence behaviour both in a case of reconstructing general nonnegative unknowns as well as for the sake of recovering probability distributions. Moreover, we discuss several variants of the algorithm and relations to other methods in the literature. The effectiveness of the approach is studied numerically in several examples.
113 - Yangyang Xu 2020
First-order methods (FOMs) have recently been applied and analyzed for solving problems with complicated functional constraints. Existing works show that FOMs for functional constrained problems have lower-order convergence rates than those for unconstrained problems. In particular, an FOM for a smooth strongly-convex problem can have linear convergence, while it can only converge sublinearly for a constrained problem if the projection onto the constraint set is prohibited. In this paper, we point out that the slower convergence is caused by the large number of functional constraints but not the constraints themselves. When there are only $m=O(1)$ functional constraints, we show that an FOM can have almost the same convergence rate as that for solving an unconstrained problem, even without the projection onto the feasible set. In addition, given an $varepsilon>0$, we show that a complexity result that is better than a lower bound can be obtained, if there are only $m=o(varepsilon^{-frac{1}{2}})$ functional constraints. Our result is surprising but does not contradict to the existing lower complexity bound, because we focus on a specific subclass of problems. Experimental results on quadratically-constrained quadratic programs demonstrate our theory.
Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More concretely, we explore a parallelization strategy that leverages the power of multicore CPUs and GPUs (graphics cards). We study this parallel method for first-order and second-order Lagrangians and we illustrate its excellent behavior in some interesting applications, namely Zermelos navigation problem, a fuel-optimal navigation problem, and an interpolation problem.
252 - Paul Manns , Stefan Ulbrich 2021
In PDE-constrained optimization, proper orthogonal decomposition (POD) provides a surrogate model of a (potentially expensive) PDE discretization, on which optimization iterations are executed. Because POD models usually provide good approximation quality only locally, they have to be updated during optimization. Updating the POD model is usually expensive, however, and therefore often impossible in a model-predictive control (MPC) context. Thus, reduced models of mediocre quality might be accepted. We take the view of a simplified Newton method for solving semilinear evolution equations to derive an algorithm that can serve as an offline phase to produce a POD model. Approaches that build the POD model with impulse response snapshots can be regarded as the first Newton step in this context. In particular, POD models that are based on impulse response snapshots are extended by adding a second simplified Newton step. This procedure improves the approximation quality of the POD model significantly by introducing a moderate amount of extra computational costs during optimization or the MPC loop. We illustrate our findings with an example satisfying our assumptions.
Quasi-Newton techniques approximate the Newton step by estimating the Hessian using the so-called secant equations. Some of these methods compute the Hessian using several secant equations but produce non-symmetric updates. Other quasi-Newton schemes, such as BFGS, enforce symmetry but cannot satisfy more than one secant equation. We propose a new type of quasi-Newton symmetric update using several secant equations in a least-squares sense. Our approach generalizes and unifies the design of quasi-Newton updates and satisfies provable robustness guarantees.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا