Modeling of Magneto-Conductivity of Bismuth Selenide -- A Topological Insulator


Abstract in English

We report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of 14Tesla. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR) of around 380 percent at a magnetic field of 14T and a temperature of 5K. The Hikami Larkin Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 Tesla, suggesting that the role of surface driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5 to 200K) and applied magnetic fields (up to 14Tesla).

Download