Do you want to publish a course? Click here

Electrically controlled quantum confinement of neutral excitons in 2D semiconductors

138   0   0.0 ( 0 )
 Added by Deepankur Thureja
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Achieving fully tunable quantum confinement of excitons has been a long-standing goal in optoelectronics and quantum photonics. We demonstrate electrically controlled 1D quantum confinement of neutral excitons by means of a lateral p-i-n junction in a monolayer transition metal dichalcogenide semiconductor. Exciton trapping in the i-region occurs due to the dc Stark effect induced by in-plane electric fields. Remarkably, we observe a new confinement mechanism arising from the repulsive polaronic dressing of excitons by electrons and holes in the surrounding regions. The overall confinement potential leads to quantization of excitonic motion, which manifests in the emergence of multiple spectrally narrow, voltage-dependent resonances in reflectance and photoluminescence measurements. Additionally, the photoluminescence from confined excitonic states exhibits high degree of linear polarization, highlighting the 1D nature of quantum confinement. Electrically tunable quantum confined excitons may provide a scalable platform for arrays of identical single photon sources and constitute building blocks of strongly correlated photonic many-body systems.



rate research

Read More

Monolayer and few-layer phosphorene are anisotropic quasi-two-dimensional (quasi-2D) van der Waals (vdW) semiconductors with a linear-dichroic light-matter interaction and a widely-tunable direct-band gap in the infrared frequency range. Despite recent theoretical predictions of strongly-bound excitons with unique properties, it remains experimentally challenging to probe the excitonic quasiparticles due to the severe oxidation during device fabrication. In this study, we report observation of strongly-bound excitons and trions with highly-anisotropic optical properties in intrinsic bilayer phosphorene, which are protected from oxidation by encapsulation with hexagonal boron nitride (hBN), in a field-effect transistor (FET) geometry. Reflection contrast and photoluminescence spectroscopy clearly reveal the linear-dichroic optical spectra from anisotropic excitons and trions in the hBN-encapsulated bilayer phosphorene. The optical resonances from the exciton Rydberg series indicate that the neutral exciton binding energy is over 100 meV even with the dielectric screening from hBN. The electrostatic injection of free holes enables an additional optical resonance from a positive trion (charged exciton) ~ 30 meV below the optical bandgap of the charge-neutral system. Our work shows exciting possibilities for monolayer and few-layer phosphorene as a platform to explore many-body physics and novel photonics and optoelectronics based on strongly-bound excitons with two-fold anisotropy.
Optically generated excitons dictate the absorption and emission spectrum of doped semiconductor transition metal dichalcogenide monolayers. We show that upon increasing the electron density, the elementary optical excitations develop a roton-like dispersion, evidenced by a shift of the lowest energy state to a finite momentum on the order of the Fermi momentum. This effect emerges due to Pauli exclusion between excitons and the electron Fermi sea, but the robustness of the roton minimum in these systems is a direct consequence of the long-range nature of the Coulomb interaction and the nonlocal dielectric screening characteristic of monolayers. Finally, we show that the emergence of rotons could be related to hitherto unexplained aspects of photoluminescence spectra in doped transition metal dichalcogenide monolayers.
Photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron-hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications but they emerge as candidates for quantum information storage. Therefore knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e. phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet-triplet gap as a function of SWCNT diameter and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows to determine the spin-relaxation time for triplet states. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Forster exciton energy transfer from a neighboring nanotube.
Long-range and fast transport of coherent excitons is important for development of high-speed excitonic circuits and quantum computing applications. However, most of these coherent excitons have only been observed in some low-dimensional semiconductors when coupled with cavities, as there are large inhomogeneous broadening and dephasing effects on the exciton transport in their native states of the materials. Here, by confining coherent excitons at the 2D quantum limit, we firstly observed molecular aggregation enabled super-transport of excitons in atomically thin two-dimensional (2D) organic semiconductors between coherent states, with a measured a high effective exciton diffusion coefficient of 346.9 cm2/sec at room temperature. This value is one to several orders of magnitude higher than the reported values from other organic molecular aggregates and low-dimensional inorganic materials. Without coupling to any optical cavities, the monolayer pentacene sample, a very clean 2D quantum system (1.2 nm thick) with high crystallinity (J type aggregation) and minimal interfacial states, showed superradiant emissions from the Frenkel excitons, which was experimentally confirmed by the temperature-dependent photoluminescence (PL) emission, highly enhanced radiative decay rate, significantly narrowed PL peak width and strongly directional in-plane emission. The coherence in monolayer pentacene samples was observed to be delocalized over 135 molecules, which is significantly larger than the values (a few molecules) observed from other organic thin films. In addition, the super-transport of excitons in monolayer pentacene samples showed highly anisotropic behaviour. Our results pave the way for the development of future high-speed excitonic circuits, fast OLEDs, and other opto-electronic devices.
The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emission lines in the photoluminescence spectrum of ultraclean monolayer WSe2. These excitonic satellites are composed of three major peaks with energy separations matching known phonons, and appear only with electron doping. They possess homogenous spatial and spectral distribution, strong power saturation, and anomalously long population (> 6 ${mu}$s) and polarization lifetimes (> 100 ns). Resonant excitation of the free inter- and intra-valley bright trions leads to opposite optical orientation of the satellites, while excitation of the free dark trion resonance suppresses the satellites photoluminescence. Defect-controlled crystal synthesis and scanning tunneling microscopy measurements provide corroboration that these features are dark excitons bound to dilute donors, along with associated phonon replicas. Our work opens opportunities to engineer homogenous single emitters and explore collective quantum optical phenomena using intrinsic donor-bound excitons in ultraclean 2D semiconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا