No Arabic abstract
We present high-resolution near-infrared spectra taken during eight transits of 55 Cancri e, a nearby low-density super-Earth with a short orbital period (< 18 hours). While this exoplanets bulk density indicates a possible atmosphere, one has not been detected definitively. Our analysis relies on the Doppler cross-correlation technique, which takes advantage of the high spectral resolution and broad wavelength coverage of our data, to search for the thousands of absorption features from hydrogen-, carbon-, and nitrogen-rich molecular species in the planetary atmosphere. Although we are unable to detect an atmosphere around 55 Cancri e, we do place strong constraints on the levels of HCN, NH${}_3$, and C${}_2$H${}_2$ that may be present. In particular, at a mean molecular weight of 5 amu we can rule out the presence of HCN in the atmosphere down to a volume mixing ratio (VMR) of 0.02%, NH${}_3$ down to a VMR of 0.08%, and C${}_2$H${}_2$ down to a VMR of 1.0%. If the mean molecular weight is relaxed to 2 amu, we can rule out the presence of HCN, NH${}_3$, and C${}_2$H${}_2$ down to VMRs of 0.001%, 0.0025%, and 0.08% respectively. Our results reduce the parameter space of possible atmospheres consistent with the analysis of HST/WFC3 observations by Tsiaras et al. (2016), and indicate that if 55 Cancri e harbors an atmosphere, it must have a high mean molecular weight and/or clouds.
We report the analysis of two new spectroscopic observations of the super-Earth 55 Cancri e, in the near infrared, obtained with the WFC3 camera onboard the HST. 55 Cancri e orbits so close to its parent star, that temperatures much higher than 2000 K are expected on its surface. Given the brightness of 55 Cancri, the observations were obtained in scanning mode, adopting a very long scanning length and a very high scanning speed. We use our specialized pipeline to take into account systematics introduced by these observational parameters when coupled with the geometrical distortions of the instrument. We measure the transit depth per wavelength channel with an average relative uncertainty of 22 ppm per visit and find modulations that depart from a straight line model with a 6$sigma$ confidence level. These results suggest that 55 Cancri e is surrounded by an atmosphere, which is probably hydrogen-rich. Our fully Bayesian spectral retrieval code, T-REx, has identified HCN to be the most likely molecular candidate able to explain the features at 1.42 and 1.54 $mu$m. While additional spectroscopic observations in a broader wavelength range in the infrared will be needed to confirm the HCN detection, we discuss here the implications of such result. Our chemical model, developed with combustion specialists, indicates that relatively high mixing ratios of HCN may be caused by a high C/O ratio. This result suggests this super-Earth is a carbon-rich environment even more exotic than previously thought.
The naked-eye star 55 Cancri hosts a planetary system with five known planets, including a hot super-Earth (55 Cnc e) extremely close to its star and a farther out giant planet (55 Cnc b), found in milder irradiation conditions with respect to other known hot Jupiters. This system raises important questions on the evolution of atmospheres for close-in exoplanets, and the dependence with planetary mass and irradiation. These questions can be addressed by Lyman-alpha transit observations of the extended hydrogen planetary atmospheres, complemented by contemporaneous measurements of the stellar X-ray flux. In fact, planet `e has been detected in transit, suggesting the system is seen nearly edge-on. Yet, planet `b has not been observed in transit so far. Here, we report on Hubble Space Telescope STIS Lyman-alpha and Chandra ACIS-S X-ray observations of 55 Cnc. These simultaneous observations cover two transits of 55 Cnc e and two inferior conjunctions of 55 Cnc b. They reveal the star as a bright Lyman-alpha target and a variable X-ray source. While no significant signal is detected during the transits of 55 Cnc e, we detect a surprising Lyman-alpha absorption of 7.5 +/- 1.8% (4.2 sigma) at inferior conjunctions of 55 Cnc b. The absorption is only detected over the range of Doppler velocities where the stellar radiation repels hydrogen atoms towards the observer. We calculate a false-alarm probability of 4.4%, which takes into account the a-priori unknown transit parameters. This result suggests the possibility that 55 Cnc b has an extended upper H I atmosphere, which undergoes partial transits when the planet grazes the stellar disc. If confirmed, it would show that planets cooler than hot Jupiters can also have extended atmospheres.
The nearby super-Earth 55 Cnc e orbits a bright (V = 5.95 mag) star with a period of ~ 18 hours and a mass of ~ 8 Earth masses. Its atmosphere may be water-rich and have a large scale-height, though attempts to characterize it have yielded ambiguous results. Here we present a sensitive search for water and TiO in its atmosphere at high spectral resolution using the Gemini North telescope and the GRACES spectrograph. We combine observations with previous observations from Subaru and CFHT, improving the constraints on the presence of water vapor. We adopt parametric models with an updated planet radius based on recent measurements, and use a cross-correlation technique to maximize sensitivity. Our results are consistent with atmospheres that are cloudy or contain minimal amounts of water and TiO. Using these parametric models, we rule out a water-rich atmosphere (VMR >= 0.1%) with a mean molecular weight of <= 15 g/mol at a 3 sigma confidence level, improving on the previous limit by a significant margin. For TiO, we rule out a mean molecular weight of <= 5 g/mol with a 3 sigma confidence level for a VMR greater than 10^-8; for a VMR of greater than 10^-7, the limit rises to a mean molecular weight of <= 10 g/mol. We can rule out low mean-molecular-weight chemical equilibrium models both including and excluding TiO/VO at very high confidence levels (> 10 sigma). Overall, our results are consistent with an atmosphere with a high mean molecular weight and/or clouds, or no atmosphere.
ASTERIA (Arcsecond Space Telescope Enabling Research In Astrophysics) is a 6U CubeSat space telescope (10 cm x 20 cm x 30 cm, 10 kg). ASTERIAs primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stabilty thermal control. ASTERIA demonstrated 0.5 arcsecond RMS pointing stability and $pm$10 milliKelvin thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIAs size and mass class. ASTERIA launched in August 2017 and deployed from the International Space Station (ISS) November 2017. During the prime mission (November 2017 -- February 2018) and the first extended mission that followed (March 2018 - May 2018), ASTERIA conducted opportunistic science observations which included collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct CMOS detector column-dependent gain variations. A Markov Chain Monte Carlo (MCMC) approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e ($sim2$~Rearth), measuring a transit depth of $374pm170$ ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.
We present archival Giant Metrewave Radio Telescope (GMRT) observations of two exoplanetary systems, $tau$ Bootis, and 55 Cancri, at 610 MHz and 150 MHz, respectively. Theoretical models predict these systems to have some of the highest expected flux densities at radio wavelengths. Both $tau$ Bootis and 55 Cancri have been previously observed at low frequency ($sim$ 30 MHz) with Low-Frequency Array (LOFAR) (Turner et al. 2020). $tau$ Bootis shows tentative signatures of circularly polarized emission at 30 MHz, while no emission was detected from 55 Cancri. We do not detect radio emission from both the systems, but the GMRT observations set $3sigma$ upper limits of 0.6 mJy at 610 MHz for $tau$ Bootis and 4.6 mJy at 150 MHz for 55 Cancri. The sensitivity achieved at 610 MHz in these observations is comparable to some of the deepest images of an exoplanet field.