Do you want to publish a course? Click here

On the origin of GeV spectral break for Fermi blazars: 3C 454.3

192   0   0.0 ( 0 )
 Added by Shi-Ju Kang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The GeV break in spectra of the blazar 3C 454.3 is a special observation feature that has been discovered by the {it Fermi}-LAT. The origin of the GeV break in the spectra is still under debate. In order to explore the possible source of GeV spectral break in 3C 454.3, a one-zone homogeneous leptonic jet model, as well as the {it McFit} technique are utilized for fitting the quasi-simultaneous multi-waveband spectral energy distribution (SED) of 3C 454.3. The outside border of the broad-line region (BLR) and inner dust torus are chosen to contribute radiation in the model as external, seed photons to the external-Compton process, considering the observed $gamma$-ray radiation. The combination of two components, namely the Compton-scattered BLR and dust torus radiation, assuming a broken power-law distribution of emitted particles, provides a proper fitting to the multi-waveband SED of 3C 454.3 detected 2008 Aug 3 - Sept 2 and explains the GeV spectral break. We propose that the spectral break of 3C 454.3 may originate from an inherent break in the energy distribution of the emitted particles and the Klein-Nishina effect. A comparison is performed between the energy density of the external photon field for the whole BLR $U_{rm BLR}$ achieved via model fitting and that constrained from the BLR data. The distance from the position of the $gamma$-ray radiation area of 3C 454.3 to the central black hole could be constrained at $sim 0.78$pc ($sim 4.00 R_{rm BLR}$, the size of the BLR).



rate research

Read More

Observations performed with the Fermi-LAT telescope have revealed the presence of a spectral break in the GeV spectrum of flat-spectrum radio quasars (FSRQs) and other low- and intermediate-synchrotron peaked blazars. We propose that this feature can be explained by Compton scattering of broad-line region (BLR) photons by a non-thermal population of electrons described by a log-parabolic function. We consider in particular a scenario in which the energy densities of particles, magnetic field, and soft photons in the emitting region are close to equipartition. We show that this model can satisfactorily account for the overall spectral energy distribution of the FSRQ 3C 454.3, reproducing the GeV spectal cutoff due to Klein-Nishina effects and a curving electron distribution.
139 - P. S. Smith 2009
We describe the optical spectropolarimetric monitoring program at Steward Observatory centered around gamma-ray-bright blazars and the LAT Monitored Source List planned for Fermi Cycles 2-4. The large number of measurements made during Cycle 1 of the Fermi mission are available to the research community and the data products are summarized (see http://james.as.arizona.edu/~psmith/Fermi). The optical data include spectropolarimetry at a resolution of ~20 A, broad-band polarization and flux measurements, and flux-calibrated spectra spanning 4000-7600 A. These data provide a comprehensive view of the optical variability of an important sample of objects during the Fermi Era. In addition to broad-band flux and linear polarization monitoring, the spectra allow for the tracking of changes to the spectral index of the synchrotron continuum, importance of non-synchrotron emission features, and how and when the polarization varies with wavelength, an important clue as to the structure of the emission region or the identification of multiple nonthermal components. As an illustration, we present observations of 3C 454.3 obtained in 2009 September during an exceptionally bright gamma-ray flare. The blazar was optically bright during the flare, but except for a few short periods, it showed surprisingly low polarization (P < 5%). Opportunities exist within the Fermi research community to coordinate with our long-term optical monitoring program toward the goal of maximum scientific value to both the Fermi and associated radio VLBI monitoring of blazars.
115 - J. H. Fan , J. H. Yang , Y. Liu 2016
(Abridged) In this paper, multi-wavelength data are compiled for a sample of 1425 Fermi blazars to calculate their spectral energy distributions (SEDs). A parabolic function, $log( u F_{ u}) = P_1(log u - P_2)^2 + P_3,$ is used for SED fitting. Synchrotron peak frequency ($log u_p$), spectral curvature ($P_1$), peak flux ($ u_{rm p}F_{rm u_p}$), and integrated flux ($ u F_{ u}$) are successfully obtained for 1392 blazars (461 flat spectrum radio quasars-FSRQs, 620 BL Lacs-BLs and 311 blazars of uncertain type-BCUs, 999 sources have known redshifts). Monochromatic luminosity at radio 1.4 GHz, optical R band, X-ray at 1 keV and $gamma$-ray at 1 GeV, peak luminosity, integrated luminosity and effective spectral indexes of radio to optical ($alpha_{rm RO}$), and optical to X-ray ($alpha_{rm OX}$) are calculated. The Bayesian classification is employed to log$ u_{rm p}$ in the rest frame for 999 blazars with available redshift and the results show that 3 components are enough to fit the $log u_{rm p}$ distribution, there is no ultra high peaked subclass. Based on the 3 components, the subclasses of blazars using the acronyms of Abdo et al. (2010a) are classified, and some mutual correlations are also studied. Conclusions are finally drawn as follows: (1) SEDs are successfully obtained for 1392 blazars. The fitted peak frequencies are compared with common sources from samples available (Sambruna et al. 1996, Nieppola et al. 2006, 2008, Abdo et al. 2010a). (2) Blazars are classified as low synchrotron peak sources (LSPs) if $log u_{rm p}$(Hz) $leq 14.0$, intermediate synchrotron peak sources (ISPs) if $14.0 < log u_{rm p}$(Hz) $leq 15.3$, and high synchrotron peak sources (HSPs) if $log u_{rm p}$(Hz) $> 15.3$. (3) $gamma$-ray emissions are strongly correlated with radio emissions. (...)
Recent detection of suborbital gamma-ray variability of Flat Spectrum Radio Quasar (FSRQ) 3C 279 by Fermi Large Area Telescope (LAT) is in severe conflict with established models of blazar emission. This paper presents the results of suborbital analysis of the Fermi/LAT data for the brightest gamma-ray flare of another FSRQ blazar 3C 454.3 in November 2010 (MJD 55516-22). Gamma-ray light curves are calculated for characteristic time bin lengths as short as 3 min. The measured variations of the 0.1-10 GeV photon flux are tested against the hypothesis of steady intraorbit flux. In addition, the structure function is calculated for absolute photon flux differences and for their significances. Significant gamma-ray flux variations are measured only over time scales longer than ~5h, which is consistent with the standard blazar models.
We present multiwavelength spectral analyses of two Fermi-LAT blazars, OJ 287 and 3C 279, that are part of the Boston University multiwaveband polarization program. The data have been compiled from observations with Fermi, RXTE, the VLBA, and various ground-based optical and radio telescopes. We simulate the dynamic spectral energy distributions (SEDs) within the framework of a multi-slice, time-dependent leptonic jet model for blazars, with radiation feedback, in the internal shock scenario. We use the physical jet parameters obtained from the VLBA monitoring to guide our modeling efforts. We discuss the role of intrinsic parameters and the interplay between synchrotron and inverse Compton radiation processes responsible for producing the resultant SEDs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا