Higher Rank Chiral Fermions in 3D Weyl Semimetals


Abstract in English

We report on exotic response properties in 3D time-reversal invariant Weyl semimetals with mirror symmetry. Despite having a vanishing anomalous Hall coefficient, we find that the momentum-space quadrupole moment formed by four Weyl nodes determines the coefficient of a mixed emph{electromagnetic charge-stress} response, in which momentum flows perpendicular to an applied electric field, and electric charge accumulates on certain types of lattice defects. This response is described by a mixed Chern-Simons-like term in 3 spatial dimensions, which couples a rank-2 gauge field to the usual electromagnetic gauge field. On certain 2D surfaces of the bulk 3D Weyl semimetal, we find what we will call rank-2 chiral fermions, with $omega =k_x k_y$ dispersion. The intrinsically 2D rank-2 chiral fermions have a mixed charge-momentum anomaly which is cancelled by the bulk of the 3D system.

Download