Do you want to publish a course? Click here

Large-time behavior of compressible polytropic fluids and nonlinear Schr{o}dinger equation

121   0   0.0 ( 0 )
 Added by Remi Carles
 Publication date 2021
  fields
and research's language is English
 Authors Remi Carles




Ask ChatGPT about the research

In this paper we analyze the large-time behavior of weak solutions to polytropic fluid models possibly including quantum and capillary effects. Formal a priori estimates show that the density of solutions to these systems should disperse with time. Scaling appropriately the system, we prove that, under a reasonable assumption on the decay of energy, the density of weak solutions converges in large times to an unknown profile. In contrast with the isothermal case, we also show that there exists a large variety of asymptotic profiles. We complement the study by providing existence of global-in-time weak solutions satisfying the required decay of energy. As a byproduct of our method, we also obtain results concerning the large-time behavior of solutions to nonlinear Schr{o}dinger equation, allowing the presence of a semi-classical parameter as well as long range nonlinearities.



rate research

Read More

66 - Remi Carles 2021
We consider the large time behavior in two types of equations, posed on the whole space R^d: the Schr{o}dinger equation with a logarithmic nonlinearity on the one hand; compressible, isothermal, Euler, Korteweg and quantum Navier-Stokes equations on the other hand. We explain some connections between the two families of equations, and show how these connections may help having an insight in all cases. We insist on some specific aspects only, and refer to the cited articles for more details, and more complete statements. We try to give a general picture of the results, and present some heuristical arguments that can help the intuition, which are not necessarily found in the mentioned articles.
The blowup is studied for the nonlinear Schr{o}dinger equation $iu_{t}+Delta u+ |u|^{p-1}u=0$ with $p$ is odd and $pge 1+frac 4{N-2}$ (the energy-critical or energy-supercritical case). It is shown that the solution with negative energy $E(u_0)<0$ blows up in finite or infinite time. A new proof is also presented for the previous result in cite{HoRo2}, in which a similar result but more general in a case of energy-subcritical was shown.
98 - Jianjun Liu 2020
This paper is concerned with the derivative nonlinear Schr{o}dinger equation with periodic boundary conditions. We obtain complete Birkhoff normal form of order six. As an application, the long time stability for solutions of small amplitude is proved.
100 - Remi Carles 2021
We analyze dynamical properties of the logarithmic Schr{o}dinger equation under a quadratic potential. The sign of the nonlinearity is such that it is known that in the absence of external potential, every solution is dispersive, with a universal asymptotic profile. The introduction of a harmonic potential generates solitary waves, corresponding to generalized Gaussons. We prove that they are orbitally stable, using an inequality related to relative entropy, which may be thought of as dual to the classical logarithmic Sobolev inequality. In the case of a partial confinement, we show a universal dispersive behavior for suitable marginals. For repulsive harmonic potentials, the dispersive rate is dictated by the potential, and no universal behavior must be expected.
171 - Hironobu Sasaki 2008
We study the inverse scattering problem for the three dimensional nonlinear Schroedinger equation with the Yukawa potential. The nonlinearity of the equation is nonlocal. We reconstruct the potential and the nonlinearity by the knowledge of the scattering states. Our result is applicable to reconstructing the nonlinearity of the semi-relativistic Hartree equation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا