Negative linear compressibility and unusual dynamic behaviors of NaB3


Abstract in English

First-principles calculations reveal that sodium boride (NaB3) undergoes a phase transition from a tetragonal P4/mbm phase to an orthorhombic Pbam phase at about 16 GPa, accompanied by counterintuitive lattice expansion along the crystallographic a-axis. This unusual compression behavior is identified as negative linear compressibility (NLC), which is dominantly attributed to the symmetry-breaking of boron framework. Meanwhile, the P4/mbm and Pbam phases form superionic conductors after undergoing a peculiar swap state at high temperature. Specifically, under warm conditions the Na cation pairs exhibit a rare local exchange (or rotation) behavior, which may be originated from the asymmetric energy barriers of different diffusion paths. The study of NaB3 compound sheds new light on a material with the combination of NLC and ion transportation at extreme conditions.

Download