Among known strongly lensed quasar systems, ~25% have gravitational potentials sufficiently flat (and sources sufficiently well aligned) to produce four images rather than two. The projected flattening of the lensing galaxy and tides from neighboring galaxies both contribute to the potentials quadrupole. Witts hyperbola and Wynnes ellipse permit determination of the overall quadrupole from the positions of the quasar images. The position of the lensing galaxy resolves the distinct contributions of intrinsic ellipticity and tidal shear to that quadrupole. Among 31 quadruply lensed quasars systems with statistically significant decompositions, 15 are either reliably ($2sigma$) or provisionally ($1sigma$) shear-dominated and 11 are either reliably or provisionally ellipticity-dominated. For the remaining 8, the two effects make roughly equal contributions to the combined cross section (newly derived here) for quadruple lensing. This observational result is strongly at variance with the ellipticity-dominated forecast of Oguri & Marshall (2010).