Do you want to publish a course? Click here

Adaptive Weighting Scheme for Automatic Time-Series Data Augmentation

231   0   0.0 ( 0 )
 Added by Elizabeth Fons
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Data augmentation methods have been shown to be a fundamental technique to improve generalization in tasks such as image, text and audio classification. Recently, automated augmentation methods have led to further improvements on image classification and object detection leading to state-of-the-art performances. Nevertheless, little work has been done on time-series data, an area that could greatly benefit from automated data augmentation given the usually limited size of the datasets. We present two sample-adaptive automatic weighting schemes for data augmentation: the first learns to weight the contribution of the augmented samples to the loss, and the second method selects a subset of transformations based on the ranking of the predicted training loss. We validate our proposed methods on a large, noisy financial dataset and on time-series datasets from the UCR archive. On the financial dataset, we show that the methods in combination with a trading strategy lead to improvements in annualized returns of over 50$%$, and on the time-series data we outperform state-of-the-art models on over half of the datasets, and achieve similar performance in accuracy on the others.



rate research

Read More

Deep learning performs remarkably well on many time series analysis tasks recently. The superior performance of deep neural networks relies heavily on a large number of training data to avoid overfitting. However, the labeled data of many real-world time series applications may be limited such as classification in medical time series and anomaly detection in AIOps. As an effective way to enhance the size and quality of the training data, data augmentation is crucial to the successful application of deep learning models on time series data. In this paper, we systematically review different data augmentation methods for time series. We propose a taxonomy for the reviewed methods, and then provide a structured review for these methods by highlighting their strengths and limitations. We also empirically compare different data augmentation methods for different tasks including time series anomaly detection, classification, and forecasting. Finally, we discuss and highlight five future directions to provide useful research guidance.
In this paper we propose a data augmentation method for time series with irregular sampling, Time-Conditional Generative Adversarial Network (T-CGAN). Our approach is based on Conditional Generative Adversarial Networks (CGAN), where the generative step is implemented by a deconvolutional NN and the discriminative step by a convolutional NN. Both the generator and the discriminator are conditioned on the sampling timestamps, to learn the hidden relationship between data and timestamps, and consequently to generate new time series. We evaluate our model with synthetic and real-world datasets. For the synthetic data, we compare the performance of a classifier trained with T-CGAN-generated data, against the performance of the same classifier trained on the original data. Results show that classifiers trained on T-CGAN-generated data perform the same as classifiers trained on real data, even with very short time series and small training sets. For the real world datasets, we compare our method with other techniques of data augmentation for time series, such as time slicing and time warping, over a classification problem with unbalanced datasets. Results show that our method always outperforms the other approaches, both in case of regularly sampled and irregularly sampled time series. We achieve particularly good performance in case with a small training set and short, noisy, irregularly-sampled time series.
Access to labeled time series data is often limited in the real world, which constrains the performance of deep learning models in the field of time series analysis. Data augmentation is an effective way to solve the problem of small sample size and imbalance in time series datasets. The two key factors of data augmentation are the distance metric and the choice of interpolation method. SMOTE does not perform well on time series data because it uses a Euclidean distance metric and interpolates directly on the object. Therefore, we propose a DTW-based synthetic minority oversampling technique using siamese encoder for interpolation named DTWSSE. In order to reasonably measure the distance of the time series, DTW, which has been verified to be an effective method forts, is employed as the distance metric. To adapt the DTW metric, we use an autoencoder trained in an unsupervised self-training manner for interpolation. The encoder is a Siamese Neural Network for mapping the time series data from the DTW hidden space to the Euclidean deep feature space, and the decoder is used to map the deep feature space back to the DTW hidden space. We validate the proposed methods on a number of different balanced or unbalanced time series datasets. Experimental results show that the proposed method can lead to better performance of the downstream deep learning model.
152 - Wenjie Hu , Yang Yang , Liang Wu 2019
The modeling of time series is becoming increasingly critical in a wide variety of applications. Overall, data evolves by following different patterns, which are generally caused by different user behaviors. Given a time series, we define the evolution gene to capture the latent user behaviors and to describe how the behaviors lead to the generation of time series. In particular, we propose a uniform framework that recognizes different evolution genes of segments by learning a classifier, and adopt an adversarial generator to implement the evolution gene by estimating the segments distribution. Experimental results based on a synthetic dataset and five real-world datasets show that our approach can not only achieve a good prediction results (e.g., averagely +10.56% in terms of F1), but is also able to provide explanations of the results.
124 - He Sun , Zhun Deng , Hui Chen 2020
We introduce the decision-aware time-series conditional generative adversarial network (DAT-CGAN) as a method for time-series generation. The framework adopts a multi-Wasserstein loss on structured decision-related quantities, capturing the heterogeneity of decision-related data and providing new effectiveness in supporting the decision processes of end users. We improve sample efficiency through an overlapped block-sampling method, and provide a theoretical characterization of the generalization properties of DAT-CGAN. The framework is demonstrated on financial time series for a multi-time-step portfolio choice problem. We demonstrate better generative quality in regard to underlying data and different decision-related quantities than strong, GAN-based baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا